import os from swarms.models import OpenAIChat from swarms.structs import Agent from swarms.structs.sequential_workflow import SequentialWorkflow from dotenv import load_dotenv load_dotenv() # Load the environment variables api_key = os.getenv("OPENAI_API_KEY") # Initialize the language agent # Initialize the language model llm = OpenAIChat( temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000 ) # Initialize the agent with the language agent agent1 = Agent( llm=llm, max_loops=1, ) # Create another agent for a different task agent2 = Agent(llm=llm, max_loops=1) # Create the workflow workflow = SequentialWorkflow(max_loops=1) # Add tasks to the workflow workflow.add( agent1, "Generate a 10,000 word blog on health and wellness.", ) # Suppose the next task takes the output of the first task as input workflow.add( agent2, "Summarize the generated blog", ) # Run the workflow workflow.run() # Output the results for task in workflow.tasks: print(f"Task: {task.description}, Result: {task.result}")