from dotenv import load_dotenv from swarms import Agent, OpenAIChat from weather_swarm.prompts import ( FEW_SHORT_PROMPTS, GLOSSARY_PROMPTS, WEATHER_AGENT_SYSTEM_PROMPT, ) from weather_swarm.tools.tools import ( point_query, request_ndfd_basic, request_ndfd_hourly, ) # Load the environment variables load_dotenv() # Purpose = To generate weather information for the user and send API requests to the Baron Weather API agent = Agent( agent_name="WeatherMan Agent", system_prompt=WEATHER_AGENT_SYSTEM_PROMPT, sop_list=[GLOSSARY_PROMPTS, FEW_SHORT_PROMPTS], # sop=list_tool_schemas_json, llm=OpenAIChat(), max_loops=1, # interactive=True, dynamic_temperature_enabled=True, verbose=True, # Set the output type to the tool schema which is a BaseMode output_type=str, # or dict, or str tools=[ # request_metar_nearest, point_query, request_ndfd_basic, # point_query_region, request_ndfd_hourly, ], docs_folder="datasets", # Add every document in the datasets folder metadata="json", function_calling_format_type="OpenAI", function_calling_type="json", ) # Run the agent to generate the person's information # Run the agent to generate the person's information output = agent.run("Are there any chances of rain today in Huntsville?") # # Write the output to a new file # with open('output.txt', 'w') as f: # f.write(str(output))