from swarms import Agent, HuggingfaceLLM from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) model = HuggingfaceLLM( model_id="meta-llama/Meta-Llama-3.1-8B", max_tokens=4000, temperature=0.1, ) # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, llm=model, max_loops=1, autosave=True, # dynamic_temperature_enabled=True, dashboard=False, verbose=True, streaming_on=True, # interactive=True, # Set to False to disable interactive mode dynamic_temperature_enabled=True, saved_state_path="finance_agent.json", # tools=[Add your functions here# ], # stopping_token="Stop!", # interactive=True, # docs_folder="docs", # Enter your folder name # pdf_path="docs/finance_agent.pdf", # sop="Calculate the profit for a company.", # sop_list=["Calculate the profit for a company."], user_name="swarms_corp", # # docs= # # docs_folder="docs", retry_attempts=3, # context_length=1000, # tool_schema = dict context_length=200000, # tool_schema= # tools # agent_ops_on=True, # long_term_memory=ChromaDB(docs_folder="artifacts"), ) agent.run( "What are the components of a startups stock incentive equity plan" )