# CLI Multi-Agent Features: 3-Step Quickstart Guide Run LLM Council and Heavy Swarm directly from the command line for seamless DevOps integration. Execute sophisticated multi-agent workflows without writing Python code. ## Overview | Feature | Description | |---------|-------------| | **LLM Council CLI** | Run collaborative decision-making from terminal | | **Heavy Swarm CLI** | Execute comprehensive research swarms | | **DevOps Ready** | Integrate into CI/CD pipelines and scripts | | **Configurable** | Full parameter control from command line | --- ## Step 1: Install and Verify Ensure Swarms is installed and verify CLI access: ```bash # Install swarms pip install swarms # Verify CLI is available swarms --help ``` You should see the Swarms CLI banner and available commands. --- ## Step 2: Set Environment Variables Configure your API keys: ```bash # Set your OpenAI API key (or other provider) export OPENAI_API_KEY="your-openai-api-key" # Optional: Set workspace directory export WORKSPACE_DIR="./agent_workspace" ``` Or add to your `.env` file: ``` OPENAI_API_KEY=your-openai-api-key WORKSPACE_DIR=./agent_workspace ``` --- ## Step 3: Run Multi-Agent Commands ### LLM Council Run a collaborative council of AI agents: ```bash # Basic usage swarms llm-council --task "What is the best approach to implement microservices architecture?" # With verbose output swarms llm-council --task "Evaluate investment opportunities in AI startups" --verbose ``` ### Heavy Swarm Run comprehensive research and analysis: ```bash # Basic usage swarms heavy-swarm --task "Analyze the current state of quantum computing" # With configuration options swarms heavy-swarm \ --task "Research renewable energy market trends" \ --loops-per-agent 2 \ --question-agent-model-name gpt-4o-mini \ --worker-model-name gpt-4o-mini \ --verbose ``` --- ## Complete CLI Reference ### LLM Council Command ```bash swarms llm-council --task "" [options] ``` | Option | Description | |--------|-------------| | `--task` | **Required.** The query or question for the council | | `--verbose` | Enable detailed output logging | **Examples:** ```bash # Strategic decision swarms llm-council --task "Should our startup pivot from B2B to B2C?" # Technical evaluation swarms llm-council --task "Compare React vs Vue for enterprise applications" # Business analysis swarms llm-council --task "What are the risks of expanding to European markets?" ``` --- ### Heavy Swarm Command ```bash swarms heavy-swarm --task "" [options] ``` | Option | Default | Description | |--------|---------|-------------| | `--task` | - | **Required.** The research task | | `--loops-per-agent` | 1 | Number of loops per agent | | `--question-agent-model-name` | gpt-4o-mini | Model for question agent | | `--worker-model-name` | gpt-4o-mini | Model for worker agents | | `--random-loops-per-agent` | False | Randomize loops per agent | | `--verbose` | False | Enable detailed output | **Examples:** ```bash # Comprehensive research swarms heavy-swarm --task "Research the impact of AI on healthcare diagnostics" --verbose # With custom models swarms heavy-swarm \ --task "Analyze cryptocurrency regulation trends globally" \ --question-agent-model-name gpt-4 \ --worker-model-name gpt-4 \ --loops-per-agent 3 # Quick analysis swarms heavy-swarm --task "Summarize recent advances in battery technology" ``` --- ## Integration Examples ### Bash Script Integration ```bash #!/bin/bash # research_script.sh TOPICS=( "AI in manufacturing" "Autonomous vehicles market" "Edge computing trends" ) for topic in "${TOPICS[@]}"; do echo "Researching: $topic" swarms heavy-swarm --task "Analyze $topic" --verbose >> research_output.txt echo "---" >> research_output.txt done ``` ### CI/CD Pipeline (GitHub Actions) ```yaml name: AI Research Pipeline on: schedule: - cron: '0 9 * * 1' # Every Monday at 9 AM jobs: research: runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 - name: Set up Python uses: actions/setup-python@v4 with: python-version: '3.10' - name: Install dependencies run: pip install swarms - name: Run LLM Council env: OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} run: | swarms llm-council \ --task "Weekly market analysis for tech sector" \ --verbose > weekly_analysis.txt - name: Upload results uses: actions/upload-artifact@v3 with: name: analysis-results path: weekly_analysis.txt ``` ### Docker Integration ```dockerfile FROM python:3.10-slim RUN pip install swarms ENV OPENAI_API_KEY="" ENV WORKSPACE_DIR="/workspace" WORKDIR /workspace ENTRYPOINT ["swarms"] CMD ["--help"] ``` ```bash # Build and run docker build -t swarms-cli . docker run -e OPENAI_API_KEY="your-key" swarms-cli \ llm-council --task "Analyze market trends" ``` --- ## Other Useful CLI Commands ### Setup Check Verify your environment is properly configured: ```bash swarms setup-check --verbose ``` ### Run Single Agent Execute a single agent task: ```bash swarms agent \ --name "Research-Agent" \ --task "Summarize recent AI developments" \ --model "gpt-4o-mini" \ --max-loops 1 ``` ### Auto Swarm Automatically generate and run a swarm configuration: ```bash swarms autoswarm --task "Build a content analysis pipeline" --model gpt-4 ``` ### Show All Commands Display all available CLI features: ```bash swarms show-all ``` --- ## Output Handling ### Capture Output to File ```bash swarms llm-council --task "Evaluate cloud providers" > analysis.txt 2>&1 ``` ### JSON Output Processing ```bash swarms llm-council --task "Compare databases" | python -c " import sys import json # Process output as needed for line in sys.stdin: print(line.strip()) " ``` ### Pipe to Other Tools ```bash swarms heavy-swarm --task "Research topic" | tee research.log | grep "RESULT" ``` --- ## Troubleshooting ### Common Issues | Issue | Solution | |-------|----------| | "Command not found" | Ensure `pip install swarms` completed successfully | | "API key not set" | Export `OPENAI_API_KEY` environment variable | | "Task cannot be empty" | Always provide `--task` argument | | Timeout errors | Check network connectivity and API rate limits | ### Debug Mode Run with verbose output for debugging: ```bash swarms llm-council --task "Your query" --verbose 2>&1 | tee debug.log ``` --- ## Next Steps - Explore [CLI Reference Documentation](../swarms/cli/cli_reference.md) for all commands - See [CLI Examples](../swarms/cli/cli_examples.md) for more use cases - Learn about [LLM Council](./llm_council_quickstart.md) Python API - Try [Heavy Swarm Documentation](../swarms/structs/heavy_swarm.md) for advanced configuration