# RAG Examples Overview Enhance your agents with Retrieval-Augmented Generation (RAG). Connect to vector databases and knowledge bases to give agents access to your custom data. ## What You'll Learn | Topic | Description | |-------|-------------| | **RAG Fundamentals** | Understanding retrieval-augmented generation | | **Vector Databases** | Connecting to Qdrant, Pinecone, and more | | **Document Processing** | Ingesting and indexing documents | | **Semantic Search** | Finding relevant context for queries | --- ## RAG Examples | Example | Description | Vector DB | Link | |---------|-------------|-----------|------| | **RAG with Qdrant** | Complete RAG implementation with Qdrant | Qdrant | [View Example](../swarms/RAG/qdrant_rag.md) | --- ## Use Cases | Use Case | Description | |----------|-------------| | **Document Q&A** | Answer questions about your documents | | **Knowledge Base** | Query internal company knowledge | | **Research Assistant** | Search through research papers | | **Code Documentation** | Query codebase documentation | | **Customer Support** | Access product knowledge | --- ## Related Resources - [Memory Documentation](../swarms/memory/diy_memory.md) - Building custom memory - [Agent Long-term Memory](../swarms/structs/agent.md#long-term-memory) - Agent memory configuration