# !pip install --upgrade swarms==2.0.6 from swarms.models import BioGPT from swarms.models.nougat import Nougat from swarms.structs import Flow # # URL of the image of the financial document IMAGE_OF_FINANCIAL_DOC_URL = "bank_statement_2.jpg" # Example usage api_key = "" # Your actual API key here # Initialize the OCR model # Initialize the language flow llm = BioGPT() # Create a prompt for the language model def summary_agent_prompt(analyzed_doc: str): model = Nougat( max_new_tokens=5000, ) out = model(analyzed_doc) return f""" Generate an actionable summary of this financial document, provide bulletpoints: Here is the Analyzed Document: --- {out} """ # Initialize the Flow with the language flow flow1 = Flow(llm=llm, max_loops=1, dashboard=False) # Create another Flow for a different task flow2 = Flow(llm=llm, max_loops=1, dashboard=False) # Add tasks to the workflow summary_agent = flow1.run(summary_agent_prompt(IMAGE_OF_FINANCIAL_DOC_URL)) # Suppose the next task takes the output of the first task as input out = flow2.run( f"Provide an actionable step by step plan on how to cut costs from the analyzed financial document. {summary_agent}" )