You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
3.8 KiB
121 lines
3.8 KiB
# test_distilled_whisperx.py
|
|
|
|
from unittest.mock import AsyncMock, MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
|
|
|
from swarms.models.distilled_whisperx import DistilWhisperModel, async_retry
|
|
|
|
|
|
# Fixtures for setting up model, processor, and audio files
|
|
@pytest.fixture(scope="module")
|
|
def model_id():
|
|
return "distil-whisper/distil-large-v2"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def whisper_model(model_id):
|
|
return DistilWhisperModel(model_id)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def audio_file_path(tmp_path_factory):
|
|
# You would create a small temporary MP3 file here for testing
|
|
# or use a public domain MP3 file's path
|
|
return "path/to/valid_audio.mp3"
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def invalid_audio_file_path():
|
|
return "path/to/invalid_audio.mp3"
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def audio_dict():
|
|
# This should represent a valid audio dictionary as expected by the model
|
|
return {"array": torch.randn(1, 16000), "sampling_rate": 16000}
|
|
|
|
|
|
# Test initialization
|
|
def test_initialization(whisper_model):
|
|
assert whisper_model.model is not None
|
|
assert whisper_model.processor is not None
|
|
|
|
|
|
# Test successful transcription with file path
|
|
def test_transcribe_with_file_path(whisper_model, audio_file_path):
|
|
transcription = whisper_model.transcribe(audio_file_path)
|
|
assert isinstance(transcription, str)
|
|
|
|
|
|
# Test successful transcription with audio dict
|
|
def test_transcribe_with_audio_dict(whisper_model, audio_dict):
|
|
transcription = whisper_model.transcribe(audio_dict)
|
|
assert isinstance(transcription, str)
|
|
|
|
|
|
# Test for file not found error
|
|
def test_file_not_found(whisper_model, invalid_audio_file_path):
|
|
with pytest.raises(Exception):
|
|
whisper_model.transcribe(invalid_audio_file_path)
|
|
|
|
|
|
# Asynchronous tests
|
|
@pytest.mark.asyncio
|
|
async def test_async_transcription_success(whisper_model, audio_file_path):
|
|
transcription = await whisper_model.async_transcribe(audio_file_path)
|
|
assert isinstance(transcription, str)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_transcription_failure(whisper_model, invalid_audio_file_path):
|
|
with pytest.raises(Exception):
|
|
await whisper_model.async_transcribe(invalid_audio_file_path)
|
|
|
|
|
|
# Testing real-time transcription simulation
|
|
def test_real_time_transcription(whisper_model, audio_file_path, capsys):
|
|
whisper_model.real_time_transcribe(audio_file_path, chunk_duration=1)
|
|
captured = capsys.readouterr()
|
|
assert "Starting real-time transcription..." in captured.out
|
|
|
|
|
|
# Testing retry decorator for asynchronous function
|
|
@pytest.mark.asyncio
|
|
async def test_async_retry():
|
|
@async_retry(max_retries=2, exceptions=(ValueError,), delay=0)
|
|
async def failing_func():
|
|
raise ValueError("Test")
|
|
|
|
with pytest.raises(ValueError):
|
|
await failing_func()
|
|
|
|
|
|
# Mocking the actual model to avoid GPU/CPU intensive operations during test
|
|
@pytest.fixture
|
|
def mocked_model(monkeypatch):
|
|
model_mock = AsyncMock(AutoModelForSpeechSeq2Seq)
|
|
processor_mock = MagicMock(AutoProcessor)
|
|
monkeypatch.setattr(
|
|
"swarms.models.distilled_whisperx.AutoModelForSpeechSeq2Seq.from_pretrained",
|
|
model_mock,
|
|
)
|
|
monkeypatch.setattr(
|
|
"swarms.models.distilled_whisperx.AutoProcessor.from_pretrained", processor_mock
|
|
)
|
|
return model_mock, processor_mock
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_transcribe_with_mocked_model(mocked_model, audio_file_path):
|
|
model_mock, processor_mock = mocked_model
|
|
# Set up what the mock should return when it's called
|
|
model_mock.return_value.generate.return_value = torch.tensor([[0]])
|
|
processor_mock.return_value.batch_decode.return_value = ["mocked transcription"]
|
|
model_wrapper = DistilWhisperModel()
|
|
transcription = await model_wrapper.async_transcribe(audio_file_path)
|
|
assert transcription == "mocked transcription"
|
|
|