You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/swarm_matcher.py

578 lines
22 KiB

from typing import List, Tuple, Optional
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModel
from pydantic import BaseModel, Field
from loguru import logger
import json
from tenacity import retry, stop_after_attempt, wait_exponential
class SwarmType(BaseModel):
name: str
description: str
embedding: Optional[List[float]] = Field(
default=None, exclude=True
)
class SwarmMatcherConfig(BaseModel):
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
embedding_dim: int = (
512 # Dimension of the sentence-transformers model
)
class SwarmMatcher:
"""
A class for matching tasks to swarm types based on their descriptions.
It utilizes a transformer model to generate embeddings for task and swarm type descriptions,
and then calculates the dot product to find the best match.
"""
def __init__(self, config: SwarmMatcherConfig):
"""
Initializes the SwarmMatcher with a configuration.
Args:
config (SwarmMatcherConfig): The configuration for the SwarmMatcher.
"""
logger.add("swarm_matcher_debug.log", level="DEBUG")
logger.debug("Initializing SwarmMatcher")
try:
self.config = config
self.tokenizer = AutoTokenizer.from_pretrained(
config.model_name
)
self.model = AutoModel.from_pretrained(config.model_name)
self.swarm_types: List[SwarmType] = []
logger.debug("SwarmMatcher initialized successfully")
except Exception as e:
logger.error(f"Error initializing SwarmMatcher: {str(e)}")
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
)
def get_embedding(self, text: str) -> np.ndarray:
"""
Generates an embedding for a given text using the configured model.
Args:
text (str): The text for which to generate an embedding.
Returns:
np.ndarray: The embedding vector for the text.
"""
logger.debug(f"Getting embedding for text: {text[:50]}...")
try:
inputs = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
)
with torch.no_grad():
outputs = self.model(**inputs)
embedding = (
outputs.last_hidden_state.mean(dim=1)
.squeeze()
.numpy()
)
logger.debug("Embedding generated successfully")
return embedding
except Exception as e:
logger.error(f"Error generating embedding: {str(e)}")
raise
def add_swarm_type(self, swarm_type: SwarmType):
"""
Adds a swarm type to the list of swarm types, generating an embedding for its description.
Args:
swarm_type (SwarmType): The swarm type to add.
"""
logger.debug(f"Adding swarm type: {swarm_type.name}")
try:
embedding = self.get_embedding(swarm_type.description)
swarm_type.embedding = embedding.tolist()
self.swarm_types.append(swarm_type)
logger.info(f"Added swarm type: {swarm_type.name}")
except Exception as e:
logger.error(
f"Error adding swarm type {swarm_type.name}: {str(e)}"
)
raise
def find_best_match(self, task: str) -> Tuple[str, float]:
"""
Finds the best match for a given task among the registered swarm types.
Args:
task (str): The task for which to find the best match.
Returns:
Tuple[str, float]: A tuple containing the name of the best matching swarm type and the score.
"""
logger.debug(f"Finding best match for task: {task[:50]}...")
try:
task_embedding = self.get_embedding(task)
best_match = None
best_score = -float("inf")
for swarm_type in self.swarm_types:
score = np.dot(
task_embedding, np.array(swarm_type.embedding)
)
if score > best_score:
best_score = score
best_match = swarm_type
logger.info(
f"Best match for task: {best_match.name} (score: {best_score})"
)
return best_match.name, float(best_score)
except Exception as e:
logger.error(
f"Error finding best match for task: {str(e)}"
)
raise
def auto_select_swarm(self, task: str) -> str:
"""
Automatically selects the best swarm type for a given task based on their descriptions.
Args:
task (str): The task for which to select a swarm type.
Returns:
str: The name of the selected swarm type.
"""
logger.debug(f"Auto-selecting swarm for task: {task[:50]}...")
best_match, score = self.find_best_match(task)
logger.info(f"Task: {task}")
logger.info(f"Selected Swarm Type: {best_match}")
logger.info(f"Confidence Score: {score:.2f}")
return best_match
def run_multiple(self, tasks: List[str], *args, **kwargs) -> str:
swarms = []
for task in tasks:
output = self.auto_select_swarm(task)
# Append
swarms.append(output)
return swarms
def save_swarm_types(self, filename: str):
"""
Saves the registered swarm types to a JSON file.
Args:
filename (str): The name of the file to which to save the swarm types.
"""
try:
with open(filename, "w") as f:
json.dump([st.dict() for st in self.swarm_types], f)
logger.info(f"Saved swarm types to {filename}")
except Exception as e:
logger.error(f"Error saving swarm types: {str(e)}")
raise
def load_swarm_types(self, filename: str):
"""
Loads swarm types from a JSON file.
Args:
filename (str): The name of the file from which to load the swarm types.
"""
try:
with open(filename, "r") as f:
swarm_types_data = json.load(f)
self.swarm_types = [
SwarmType(**st) for st in swarm_types_data
]
logger.info(f"Loaded swarm types from {filename}")
except Exception as e:
logger.error(f"Error loading swarm types: {str(e)}")
raise
def initialize_swarm_types(matcher: SwarmMatcher):
logger.debug("Initializing swarm types")
swarm_types = [
SwarmType(
name="AgentRearrange",
description="Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation and minimizing bottlenecks. Keywords: orchestration, coordination, pipeline optimization, task scheduling, resource allocation, workflow management, agent organization, process optimization",
),
SwarmType(
name="MixtureOfAgents",
description="Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach to problem-solving and leveraging individual strengths. Keywords: multi-agent system, expert collaboration, distributed intelligence, collective problem solving, agent specialization, team coordination, hybrid approaches, knowledge synthesis",
),
SwarmType(
name="SpreadSheetSwarm",
description="Collaborative data processing and analysis in a spreadsheet-like environment, facilitating real-time data sharing and visualization. Keywords: data analysis, tabular processing, collaborative editing, data transformation, spreadsheet operations, data visualization, real-time collaboration, structured data",
),
SwarmType(
name="SequentialWorkflow",
description="Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical approach to task execution. Keywords: linear processing, waterfall methodology, step-by-step execution, ordered tasks, sequential operations, process flow, systematic approach, staged execution",
),
SwarmType(
name="ConcurrentWorkflow",
description="Process multiple tasks or data sources concurrently in parallel, maximizing productivity and reducing processing time. Keywords: parallel processing, multi-threading, asynchronous execution, distributed computing, concurrent operations, simultaneous tasks, parallel workflows, scalable processing",
),
# SwarmType(
# name="HierarchicalSwarm",
# description="Organize agents in a hierarchical structure with clear reporting lines and delegation of responsibilities. Keywords: management hierarchy, organizational structure, delegation, supervision, chain of command, tiered organization, structured coordination",
# ),
# SwarmType(
# name="AdaptiveSwarm",
# description="Dynamically adjust agent behavior and swarm configuration based on task requirements and performance feedback. Keywords: dynamic adaptation, self-optimization, feedback loops, learning systems, flexible configuration, responsive behavior, adaptive algorithms",
# ),
# SwarmType(
# name="ConsensusSwarm",
# description="Achieve group decisions through consensus mechanisms and voting protocols among multiple agents. Keywords: group decision making, voting systems, collective intelligence, agreement protocols, democratic processes, collaborative decisions",
# ),
]
for swarm_type in swarm_types:
matcher.add_swarm_type(swarm_type)
logger.debug("Swarm types initialized")
def swarm_matcher(task: str, *args, **kwargs):
"""
Runs the SwarmMatcher example with predefined tasks and swarm types.
"""
config = SwarmMatcherConfig()
matcher = SwarmMatcher(config)
initialize_swarm_types(matcher)
# matcher.save_swarm_types(f"swarm_logs/{uuid4().hex}.json")
swarm_type = matcher.auto_select_swarm(task)
logger.info(f"{swarm_type}")
return swarm_type
# from typing import List, Tuple, Dict
# from pydantic import BaseModel, Field
# from loguru import logger
# from uuid import uuid4
# import chromadb
# import json
# from tenacity import retry, stop_after_attempt, wait_exponential
# class SwarmType(BaseModel):
# """A swarm type with its name, description and optional metadata"""
# id: str = Field(default_factory=lambda: str(uuid4()))
# name: str
# description: str
# metadata: Dict = Field(default_factory=dict)
# class SwarmMatcherConfig(BaseModel):
# """Configuration for the SwarmMatcher"""
# collection_name: str = "swarm_types"
# distance_metric: str = "cosine" # or "l2" or "ip"
# embedding_function: str = (
# "sentence-transformers/all-mpnet-base-v2" # Better model than MiniLM
# )
# persist_directory: str = "./chroma_db"
# class SwarmMatcher:
# """
# An improved swarm matcher that uses ChromaDB for better vector similarity search.
# Features:
# - Persistent storage of embeddings
# - Better vector similarity search with multiple distance metrics
# - Improved embedding model
# - Metadata filtering capabilities
# - Batch operations support
# """
# def __init__(self, config: SwarmMatcherConfig):
# """Initialize the improved swarm matcher"""
# logger.add("swarm_matcher.log", rotation="100 MB")
# self.config = config
# # Initialize ChromaDB client with persistence
# self.chroma_client = chromadb.Client()
# # Get or create collection
# try:
# self.collection = self.chroma_client.get_collection(
# name=config.collection_name,
# )
# except ValueError:
# self.collection = self.chroma_client.create_collection(
# name=config.collection_name,
# metadata={"hnsw:space": config.distance_metric},
# )
# logger.info(
# f"Initialized SwarmMatcher with collection '{config.collection_name}'"
# )
# def add_swarm_type(self, swarm_type: SwarmType) -> None:
# """Add a single swarm type to the collection"""
# try:
# self.collection.add(
# ids=[swarm_type.id],
# documents=[swarm_type.description],
# metadatas=[
# {"name": swarm_type.name, **swarm_type.metadata}
# ],
# )
# logger.info(f"Added swarm type: {swarm_type.name}")
# except Exception as e:
# logger.error(
# f"Error adding swarm type {swarm_type.name}: {str(e)}"
# )
# raise
# def add_swarm_types(self, swarm_types: List[SwarmType]) -> None:
# """Add multiple swarm types in batch"""
# try:
# self.collection.add(
# ids=[st.id for st in swarm_types],
# documents=[st.description for st in swarm_types],
# metadatas=[
# {"name": st.name, **st.metadata}
# for st in swarm_types
# ],
# )
# logger.info(f"Added {len(swarm_types)} swarm types")
# except Exception as e:
# logger.error(
# f"Error adding swarm types in batch: {str(e)}"
# )
# raise
# @retry(
# stop=stop_after_attempt(3),
# wait=wait_exponential(multiplier=1, min=4, max=10),
# )
# def find_best_matches(
# self,
# task: str,
# n_results: int = 3,
# score_threshold: float = 0.7,
# ) -> List[Tuple[str, float]]:
# """
# Find the best matching swarm types for a given task
# Returns multiple matches with their scores
# """
# try:
# results = self.collection.query(
# query_texts=[task],
# n_results=n_results,
# include=["metadatas", "distances"],
# )
# matches = []
# for metadata, distance in zip(
# results["metadatas"][0], results["distances"][0]
# ):
# # Convert distance to similarity score (1 - normalized_distance)
# score = 1 - (
# distance / 2
# ) # Normalize cosine distance to [0,1]
# if score >= score_threshold:
# matches.append((metadata["name"], score))
# logger.info(f"Found {len(matches)} matches for task")
# return matches
# except Exception as e:
# logger.error(f"Error finding matches for task: {str(e)}")
# raise
# def auto_select_swarm(self, task: str) -> str:
# """
# Automatically select the best swarm type for a task
# Returns only the top match
# """
# matches = self.find_best_matches(task, n_results=1)
# if not matches:
# logger.warning("No suitable matches found for task")
# return "SequentialWorkflow" # Default fallback
# best_match, score = matches[0]
# logger.info(
# f"Selected swarm type '{best_match}' with confidence {score:.3f}"
# )
# return best_match
# def run_multiple(self, tasks: List[str]) -> List[str]:
# """Process multiple tasks in batch"""
# return [self.auto_select_swarm(task) for task in tasks]
# def save_swarm_types(self, filename: str) -> None:
# """Export swarm types to JSON"""
# try:
# all_data = self.collection.get(
# include=["metadatas", "documents"]
# )
# swarm_types = [
# SwarmType(
# id=id_,
# name=metadata["name"],
# description=document,
# metadata={
# k: v
# for k, v in metadata.items()
# if k != "name"
# },
# )
# for id_, metadata, document in zip(
# all_data["ids"],
# all_data["metadatas"],
# all_data["documents"],
# )
# ]
# with open(filename, "w") as f:
# json.dump(
# [st.dict() for st in swarm_types], f, indent=2
# )
# logger.info(f"Saved swarm types to {filename}")
# except Exception as e:
# logger.error(f"Error saving swarm types: {str(e)}")
# raise
# def load_swarm_types(self, filename: str) -> None:
# """Import swarm types from JSON"""
# try:
# with open(filename, "r") as f:
# swarm_types_data = json.load(f)
# swarm_types = [SwarmType(**st) for st in swarm_types_data]
# self.add_swarm_types(swarm_types)
# logger.info(f"Loaded swarm types from {filename}")
# except Exception as e:
# logger.error(f"Error loading swarm types: {str(e)}")
# raise
# def initialize_default_swarm_types(matcher: SwarmMatcher) -> None:
# """Initialize the matcher with default swarm types"""
# swarm_types = [
# SwarmType(
# name="AgentRearrange",
# description="""
# Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation
# and minimizing bottlenecks. Specialized in orchestration, coordination, pipeline optimization,
# task scheduling, resource allocation, workflow management, agent organization, and process optimization.
# Best for tasks requiring complex agent interactions and workflow optimization.
# """,
# metadata={
# "category": "optimization",
# "complexity": "high",
# },
# ),
# SwarmType(
# name="MixtureOfAgents",
# description="""
# Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach
# to problem-solving and leveraging individual strengths. Focuses on multi-agent systems,
# expert collaboration, distributed intelligence, collective problem solving, agent specialization,
# team coordination, hybrid approaches, and knowledge synthesis. Ideal for complex problems
# requiring multiple areas of expertise.
# """,
# metadata={
# "category": "collaboration",
# "complexity": "high",
# },
# ),
# SwarmType(
# name="SpreadSheetSwarm",
# description="""
# Collaborative data processing and analysis in a spreadsheet-like environment, facilitating
# real-time data sharing and visualization. Specializes in data analysis, tabular processing,
# collaborative editing, data transformation, spreadsheet operations, data visualization,
# real-time collaboration, and structured data handling. Perfect for data-intensive tasks
# requiring structured analysis.
# """,
# metadata={
# "category": "data_processing",
# "complexity": "medium",
# },
# ),
# SwarmType(
# name="SequentialWorkflow",
# description="""
# Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical
# approach to task execution. Focuses on linear processing, waterfall methodology, step-by-step
# execution, ordered tasks, sequential operations, process flow, systematic approach, and staged
# execution. Best for tasks requiring strict order and dependencies.
# """,
# metadata={"category": "workflow", "complexity": "low"},
# ),
# SwarmType(
# name="ConcurrentWorkflow",
# description="""
# Process multiple tasks or data sources concurrently in parallel, maximizing productivity
# and reducing processing time. Specializes in parallel processing, multi-threading,
# asynchronous execution, distributed computing, concurrent operations, simultaneous tasks,
# parallel workflows, and scalable processing. Ideal for independent tasks that can be
# processed simultaneously.
# """,
# metadata={"category": "workflow", "complexity": "medium"},
# ),
# ]
# matcher.add_swarm_types(swarm_types)
# logger.info("Initialized default swarm types")
# def create_swarm_matcher(
# persist_dir: str = "./chroma_db",
# collection_name: str = "swarm_types",
# ) -> SwarmMatcher:
# """Convenience function to create and initialize a swarm matcher"""
# config = SwarmMatcherConfig(
# persist_directory=persist_dir, collection_name=collection_name
# )
# matcher = SwarmMatcher(config)
# initialize_default_swarm_types(matcher)
# return matcher
# # Example usage
# def swarm_matcher(task: str) -> str:
# # Create and initialize matcher
# matcher = create_swarm_matcher()
# swarm_type = matcher.auto_select_swarm(task)
# print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")
# return swarm_type
# # # Example usage
# # if __name__ == "__main__":
# # # Create and initialize matcher
# # matcher = create_swarm_matcher()
# # # Example tasks
# # tasks = [
# # "Analyze this spreadsheet of sales data and create visualizations",
# # "Coordinate multiple AI agents to solve a complex problem",
# # "Process these tasks one after another in a specific order",
# # "Write multiple blog posts about the latest advancements in swarm intelligence all at once",
# # "Write a blog post about the latest advancements in swarm intelligence",
# # ]
# # # Process tasks
# # for task in tasks:
# # swarm_type = matcher.auto_select_swarm(task)
# # print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")