You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/agents/utils/AgentManager.py

115 lines
4.1 KiB

from typing import Dict, Optional
import logging
from celery import Task
from langchain.agents.agent import AgentExecutor
from langchain.callbacks.manager import CallbackManager
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.memory.chat_memory import BaseChatMemory
from swarms.tools.main import BaseToolSet, ToolsFactory
from .AgentBuilder import AgentBuilder
from .Calback import EVALCallbackHandler, ExecutionTracingCallbackHandler
callback_manager_instance = CallbackManager(EVALCallbackHandler())
class AgentManager:
def __init__(self, toolsets: list[BaseToolSet] = []):
if not isinstance(toolsets, list):
raise TypeError("Toolsets must be a list")
self.toolsets: list[BaseToolSet] = toolsets
self.memories: Dict[str, BaseChatMemory] = {}
self.executors: Dict[str, AgentExecutor] = {}
def create_memory(self) -> BaseChatMemory:
return ConversationBufferMemory(memory_key="chat_history", return_messages=True)
def get_or_create_memory(self, session: str) -> BaseChatMemory:
if not isinstance(session, str):
raise TypeError("Session must be a string")
if not session:
raise ValueError("Session is empty")
if not (session in self.memories):
self.memories[session] = self.create_memory()
return self.memories[session]
def create_executor(self, session: str, execution: Optional[Task] = None, openai_api_key: str = None) -> AgentExecutor:
try:
builder = AgentBuilder(self.toolsets)
builder.build_parser()
callbacks = []
eval_callback = EVALCallbackHandler()
eval_callback.set_parser(builder.get_parser())
callbacks.append(eval_callback)
if execution:
execution_callback = ExecutionTracingCallbackHandler(execution)
execution_callback.set_parser(builder.get_parser())
callbacks.append(execution_callback)
#llm init
callback_manager = CallbackManager(callbacks)
builder.build_llm(callback_manager, openai_api_key)
if builder.llm is None:
raise ValueError('LLM not created')
builder.build_global_tools()
#agent init
agent = builder.get_agent()
if not agent:
raise ValueError("Agent not created")
memory: BaseChatMemory = self.get_or_create_memory(session)
tools = [
*builder.get_global_tools(),
*ToolsFactory.create_per_session_tools(
self.toolsets,
get_session=lambda: (session, self.executors[session]),
),
]
for tool in tools:
tool.callback_manager = callback_manager
# # Ensure the 'agent' key is present in the values dictionary
# values = {'agent': agent, 'tools': tools}
# executor = AgentExecutor.from_agent_and_tools(
# agent=agent,
# tools=tools,
# memory=memory,
# callback_manager=callback_manager,
# verbose=True,
# )
# Prepare the arguments for the executor
executor_args = {
'agent': agent,
'tools': tools,
'memory': memory,
'callback_manager': callback_manager,
'verbose': True # Or any other value based on your requirement
}
executor = AgentExecutor.from_agent_and_tools(**executor_args)
if 'agent' not in executor.__dict__:
executor.__dict__['agent'] = agent
self.executors[session] = executor
return executor
except Exception as e:
logging.error(f"Error while creating executor: {str(e)}")
raise e
@staticmethod
def create(toolsets: list[BaseToolSet]) -> "AgentManager":
if not isinstance(toolsets, list):
raise TypeError("Toolsets must be a list")
return AgentManager(toolsets=toolsets)