You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.2 KiB
67 lines
2.2 KiB
import logging
|
|
|
|
import torch
|
|
|
|
from swarms.utils import check_device
|
|
|
|
# For the purpose of the test, we're assuming that the `memory_allocated`
|
|
# and `memory_reserved` function behave the same as `torch.cuda.memory_allocated`
|
|
# and `torch.cuda.memory_reserved`
|
|
|
|
|
|
def test_check_device_no_cuda(monkeypatch):
|
|
# Mock torch.cuda.is_available to always return False
|
|
monkeypatch.setattr(torch.cuda, "is_available", lambda: False)
|
|
|
|
result = check_device(log_level=logging.DEBUG)
|
|
assert result.type == "cpu"
|
|
|
|
|
|
def test_check_device_cuda_exception(monkeypatch):
|
|
# Mock torch.cuda.is_available to raise an exception
|
|
monkeypatch.setattr(
|
|
torch.cuda, "is_available", lambda: 1 / 0
|
|
) # Raises ZeroDivisionError
|
|
|
|
result = check_device(log_level=logging.DEBUG)
|
|
assert result.type == "cpu"
|
|
|
|
|
|
def test_check_device_one_cuda(monkeypatch):
|
|
# Mock torch.cuda.is_available to return True
|
|
monkeypatch.setattr(torch.cuda, "is_available", lambda: True)
|
|
# Mock torch.cuda.device_count to return 1
|
|
monkeypatch.setattr(torch.cuda, "device_count", lambda: 1)
|
|
# Mock torch.cuda.memory_allocated and torch.cuda.memory_reserved to return 0
|
|
monkeypatch.setattr(
|
|
torch.cuda, "memory_allocated", lambda device: 0
|
|
)
|
|
monkeypatch.setattr(
|
|
torch.cuda, "memory_reserved", lambda device: 0
|
|
)
|
|
|
|
result = check_device(log_level=logging.DEBUG)
|
|
assert len(result) == 1
|
|
assert result[0].type == "cuda"
|
|
assert result[0].index == 0
|
|
|
|
|
|
def test_check_device_multiple_cuda(monkeypatch):
|
|
# Mock torch.cuda.is_available to return True
|
|
monkeypatch.setattr(torch.cuda, "is_available", lambda: True)
|
|
# Mock torch.cuda.device_count to return 4
|
|
monkeypatch.setattr(torch.cuda, "device_count", lambda: 4)
|
|
# Mock torch.cuda.memory_allocated and torch.cuda.memory_reserved to return 0
|
|
monkeypatch.setattr(
|
|
torch.cuda, "memory_allocated", lambda device: 0
|
|
)
|
|
monkeypatch.setattr(
|
|
torch.cuda, "memory_reserved", lambda device: 0
|
|
)
|
|
|
|
result = check_device(log_level=logging.DEBUG)
|
|
assert len(result) == 4
|
|
for i in range(4):
|
|
assert result[i].type == "cuda"
|
|
assert result[i].index == i
|