You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarm_workers_agents.py

131 lines
3.2 KiB

"""
Todo
- Add more data in RAG for hydroponic based solutions with images and very detailed captions
- Introduce JSON function calling for the diagnoser -> good / bad -> if bad then disease detecter agent
- List of common desases -> if agent picks one of those diseases -> select another of available treatments
- Fix error choice
"""
import os
from dotenv import load_dotenv
from playground.demos.plant_biologist_swarm.prompts import (
diagnoser_agent,
disease_detector_agent,
growth_predictor_agent,
harvester_agent,
treatment_recommender_agent,
)
from swarms import Agent
from swarms.models.gpt_o import GPT4o
# Load the OpenAI API key from the .env file
load_dotenv()
# Initialize the OpenAI API key
api_key = os.environ.get("OPENAI_API_KEY")
# llm = llm,
llm = GPT4o(max_tokens=3000, openai_api_key=os.getenv("OPENAI_API_KEY"))
# Initialize Diagnoser Agent
diagnoser_agent = Agent(
agent_name="Diagnoser Agent",
system_prompt=diagnoser_agent(),
llm=llm,
max_loops=1,
dashboard=False,
# streaming_on=True,
# verbose=True,
# saved_state_path="diagnoser.json",
multi_modal=True,
autosave=True,
streaming_on=True,
)
# Initialize Harvester Agent
harvester_agent = Agent(
agent_name="Harvester Agent",
system_prompt=harvester_agent(),
llm=llm,
max_loops=1,
dashboard=False,
# streaming_on=True,
# verbose=True,
# saved_state_path="harvester.json",
multi_modal=True,
autosave=True,
streaming_on=True,
)
# Initialize Growth Predictor Agent
growth_predictor_agent = Agent(
agent_name="Growth Predictor Agent",
system_prompt=growth_predictor_agent(),
llm=llm,
max_loops=1,
dashboard=False,
# streaming_on=True,
# verbose=True,
# saved_state_path="growth_predictor.json",
multi_modal=True,
autosave=True,
streaming_on=True,
)
# Initialize Treatment Recommender Agent
treatment_recommender_agent = Agent(
agent_name="Treatment Recommender Agent",
system_prompt=treatment_recommender_agent(),
llm=llm,
max_loops=1,
dashboard=False,
# streaming_on=True,
# verbose=True,
# saved_state_path="treatment_recommender.json",
multi_modal=True,
autosave=True,
streaming_on=True,
)
# Initialize Disease Detector Agent
disease_detector_agent = Agent(
agent_name="Disease Detector Agent",
system_prompt=disease_detector_agent(),
llm=llm,
max_loops=1,
dashboard=False,
# streaming_on=True,
# verbose=True,
# saved_state_path="disease_detector.json",
multi_modal=True,
autosave=True,
streaming_on=True,
)
agents = [
diagnoser_agent,
disease_detector_agent,
treatment_recommender_agent,
growth_predictor_agent,
harvester_agent,
]
task = "Conduct a diagnosis on the plants's symptoms, this wasn't grown in dirt, it grew from hydroponics"
img = "bad_tomato.jpg"
loop = 0
for i in range(len(agents)):
if i == 0:
output = agents[i].run(task, img)
print(output)
else:
output = agents[i].run(output, img)
print(output)
# Add extensive logging for each agent
print(f"Agent {i+1} - {agents[i].agent_name}")
print("-----------------------------------")