You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/scripts/auto_tests_docs/auto_docs.py

138 lines
3.5 KiB

###### VERISON2
import inspect
import os
import threading
from swarms import OpenAIChat
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms.structs.agent import Agent
from swarms.structs.autoscaler import AutoScaler
from swarms.structs.base import BaseStructure
from swarms.structs.base_swarm import AbstractSwarm
from swarms.structs.base_workflow import BaseWorkflow
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
from swarms.structs.conversation import Conversation
from swarms.structs.groupchat import GroupChat, GroupChatManager
from swarms.structs.model_parallizer import ModelParallelizer
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
from swarms.structs.nonlinear_workflow import NonlinearWorkflow
from swarms.structs.recursive_workflow import RecursiveWorkflow
from swarms.structs.schemas import (
Artifact,
ArtifactUpload,
StepInput,
TaskInput,
)
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.swarm_net import SwarmNetwork
from swarms.structs.utils import (
distribute_tasks,
extract_key_from_json,
extract_tokens_from_text,
find_agent_by_id,
find_token_in_text,
parse_tasks,
)
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=4000,
)
def process_documentation(
item,
module: str = "swarms.structs",
docs_folder_path: str = "docs/swarms/structs",
):
"""
Process the documentation for a given class or function using OpenAI model and save it in a Python file.
"""
doc = inspect.getdoc(item)
source = inspect.getsource(item)
is_class = inspect.isclass(item)
item_type = "Class Name" if is_class else "Name"
input_content = (
f"{item_type}:"
f" {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
# Process with OpenAI model
processed_content = model(
DOCUMENTATION_WRITER_SOP(input_content, module)
)
doc_content = f"# {item.__name__}\n\n{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = docs_folder_path
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Python file
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.md")
with open(file_path, "w") as file:
file.write(doc_content)
print(
f"Processed documentation for {item.__name__}. at {file_path}"
)
def main():
items = [
Agent,
SequentialWorkflow,
AutoScaler,
Conversation,
TaskInput,
Artifact,
ArtifactUpload,
StepInput,
SwarmNetwork,
ModelParallelizer,
MultiAgentCollaboration,
AbstractSwarm,
GroupChat,
GroupChatManager,
parse_tasks,
find_agent_by_id,
distribute_tasks,
find_token_in_text,
extract_key_from_json,
extract_tokens_from_text,
ConcurrentWorkflow,
RecursiveWorkflow,
NonlinearWorkflow,
BaseWorkflow,
BaseStructure,
]
threads = []
for cls in items:
thread = threading.Thread(
target=process_documentation, args=(cls,)
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print(
"Documentation generated in 'docs/swarms/structs' directory."
)
if __name__ == "__main__":
main()