You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/models/jina_embeds.py

244 lines
7.8 KiB

import os
import logging
import torch
from numpy.linalg import norm
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from swarms.models.base_embedding_model import BaseEmbeddingModel
def cos_sim(a, b):
return a @ b.T / (norm(a) * norm(b))
class JinaEmbeddings(BaseEmbeddingModel):
"""
Jina Embeddings model.
Args:
model_id (str): The model id to use. Default is "jinaai/jina-embeddings-v2-base-en".
device (str): The device to run the model on. Default is "cuda".
huggingface_api_key (str): The Hugging Face API key. Default is None.
max_length (int): The maximum length of the response. Default is 500.
quantize (bool): Whether to quantize the model. Default is False.
quantization_config (dict): The quantization configuration. Default is None.
verbose (bool): Whether to print verbose logs. Default is False.
distributed (bool): Whether to use distributed processing. Default is False.
decoding (bool): Whether to use decoding. Default is False.
cos_sim (callable): The cosine similarity function. Default is cos_sim.
Methods:
run: _description_
Examples:
>>> model = JinaEmbeddings(
>>> max_length=8192,
>>> device="cuda",
>>> quantize=True,
>>> huggingface_api_key="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"
>>> )
>>> embeddings = model("Encode this super long document text")
"""
def __init__(
self,
model_id: str = "jinaai/jina-embeddings-v2-base-en",
device: str = None,
huggingface_api_key: str = None,
max_length: int = 500,
quantize: bool = False,
quantization_config: dict = None,
verbose=False,
distributed=False,
decoding=False,
cos_sim: callable = cos_sim,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.logger = logging.getLogger(__name__)
self.device = (
device
if device
else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.huggingface_api_key = huggingface_api_key
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
self.cos_sim = cos_sim
if self.distributed:
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
# If API key then set it
if self.huggingface_api_key:
os.environ["HF_TOKEN"] = self.huggingface_api_key
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
trust_remote_code=True,
)
self.model # .to(self.device)
except Exception as e:
self.logger.error(
f"Failed to load the model or the tokenizer: {e}"
)
raise
"""Load the model"""
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id
)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
trust_remote_code=True,
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
"Failed to load the model or the tokenizer:"
f" {error}"
)
raise
def run(self, task: str, *args, **kwargs):
"""
Generate a response based on the prompt text.
Args:
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
max_length = self.max_length
try:
embeddings = self.model.encode(
[task], max_length=max_length, *args, **kwargs
)
if self.cos_sim:
print(cos_sim(embeddings[0], embeddings[1]))
else:
return embeddings[0]
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def run_async(self, task: str, *args, **kwargs) -> str:
"""
Run the model asynchronously
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def __call__(self, task: str, *args, **kwargs):
"""
Generate a response based on the prompt text.
Args:
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
embeddings = self.model.encode(
[task], max_length=max_length, *args, **kwargs
)
if self.cos_sim:
print(cos_sim(embeddings[0], embeddings[1]))
else:
return embeddings[0]
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def __call_async__(self, task: str, *args, **kwargs) -> str:
"""Call the model asynchronously""" ""
return await self.run_async(task, *args, **kwargs)
def save_model(self, path: str):
"""Save the model to a given path"""
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def gpu_available(self) -> bool:
"""Check if GPU is available"""
return torch.cuda.is_available()
def memory_consumption(self) -> dict:
"""Get the memory consumption of the GPU"""
if self.gpu_available():
torch.cuda.synchronize()
allocated = torch.cuda.memory_allocated()
reserved = torch.cuda.memory_reserved()
return {"allocated": allocated, "reserved": reserved}
else:
return {"error": "GPU not available"}
def try_embed_chunk(self, chunk: str) -> list[float]:
return super().try_embed_chunk(chunk)