You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
7.8 KiB
244 lines
7.8 KiB
import os
|
|
import logging
|
|
|
|
import torch
|
|
from numpy.linalg import norm
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
BitsAndBytesConfig,
|
|
)
|
|
from swarms.models.base_embedding_model import BaseEmbeddingModel
|
|
|
|
|
|
def cos_sim(a, b):
|
|
return a @ b.T / (norm(a) * norm(b))
|
|
|
|
|
|
class JinaEmbeddings(BaseEmbeddingModel):
|
|
"""
|
|
Jina Embeddings model.
|
|
|
|
Args:
|
|
model_id (str): The model id to use. Default is "jinaai/jina-embeddings-v2-base-en".
|
|
device (str): The device to run the model on. Default is "cuda".
|
|
huggingface_api_key (str): The Hugging Face API key. Default is None.
|
|
max_length (int): The maximum length of the response. Default is 500.
|
|
quantize (bool): Whether to quantize the model. Default is False.
|
|
quantization_config (dict): The quantization configuration. Default is None.
|
|
verbose (bool): Whether to print verbose logs. Default is False.
|
|
distributed (bool): Whether to use distributed processing. Default is False.
|
|
decoding (bool): Whether to use decoding. Default is False.
|
|
cos_sim (callable): The cosine similarity function. Default is cos_sim.
|
|
|
|
Methods:
|
|
run: _description_
|
|
|
|
Examples:
|
|
>>> model = JinaEmbeddings(
|
|
>>> max_length=8192,
|
|
>>> device="cuda",
|
|
>>> quantize=True,
|
|
>>> huggingface_api_key="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"
|
|
>>> )
|
|
>>> embeddings = model("Encode this super long document text")
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_id: str = "jinaai/jina-embeddings-v2-base-en",
|
|
device: str = None,
|
|
huggingface_api_key: str = None,
|
|
max_length: int = 500,
|
|
quantize: bool = False,
|
|
quantization_config: dict = None,
|
|
verbose=False,
|
|
distributed=False,
|
|
decoding=False,
|
|
cos_sim: callable = cos_sim,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.logger = logging.getLogger(__name__)
|
|
self.device = (
|
|
device
|
|
if device
|
|
else ("cuda" if torch.cuda.is_available() else "cpu")
|
|
)
|
|
self.huggingface_api_key = huggingface_api_key
|
|
self.model_id = model_id
|
|
self.max_length = max_length
|
|
self.verbose = verbose
|
|
self.distributed = distributed
|
|
self.decoding = decoding
|
|
self.model, self.tokenizer = None, None
|
|
self.cos_sim = cos_sim
|
|
|
|
if self.distributed:
|
|
assert (
|
|
torch.cuda.device_count() > 1
|
|
), "You need more than 1 gpu for distributed processing"
|
|
|
|
# If API key then set it
|
|
if self.huggingface_api_key:
|
|
os.environ["HF_TOKEN"] = self.huggingface_api_key
|
|
|
|
bnb_config = None
|
|
if quantize:
|
|
if not quantization_config:
|
|
quantization_config = {
|
|
"load_in_4bit": True,
|
|
"bnb_4bit_use_double_quant": True,
|
|
"bnb_4bit_quant_type": "nf4",
|
|
"bnb_4bit_compute_dtype": torch.bfloat16,
|
|
}
|
|
bnb_config = BitsAndBytesConfig(**quantization_config)
|
|
|
|
try:
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
quantization_config=bnb_config,
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
self.model # .to(self.device)
|
|
except Exception as e:
|
|
self.logger.error(
|
|
f"Failed to load the model or the tokenizer: {e}"
|
|
)
|
|
raise
|
|
|
|
"""Load the model"""
|
|
if not self.model or not self.tokenizer:
|
|
try:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.model_id
|
|
)
|
|
|
|
bnb_config = (
|
|
BitsAndBytesConfig(**self.quantization_config)
|
|
if self.quantization_config
|
|
else None
|
|
)
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
quantization_config=bnb_config,
|
|
trust_remote_code=True,
|
|
).to(self.device)
|
|
|
|
if self.distributed:
|
|
self.model = DDP(self.model)
|
|
except Exception as error:
|
|
self.logger.error(
|
|
"Failed to load the model or the tokenizer:"
|
|
f" {error}"
|
|
)
|
|
raise
|
|
|
|
def run(self, task: str, *args, **kwargs):
|
|
"""
|
|
Generate a response based on the prompt text.
|
|
|
|
Args:
|
|
- task (str): Text to prompt the model.
|
|
- max_length (int): Maximum length of the response.
|
|
|
|
Returns:
|
|
- Generated text (str).
|
|
"""
|
|
|
|
max_length = self.max_length
|
|
|
|
try:
|
|
embeddings = self.model.encode(
|
|
[task], max_length=max_length, *args, **kwargs
|
|
)
|
|
|
|
if self.cos_sim:
|
|
print(cos_sim(embeddings[0], embeddings[1]))
|
|
else:
|
|
return embeddings[0]
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to generate the text: {e}")
|
|
raise
|
|
|
|
async def run_async(self, task: str, *args, **kwargs) -> str:
|
|
"""
|
|
Run the model asynchronously
|
|
|
|
Args:
|
|
task (str): Task to run.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Examples:
|
|
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
|
|
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
|
|
'Once upon a time in a land far, far away...'
|
|
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
|
|
['In the deep jungles,',
|
|
'At the heart of the city,']
|
|
>>> mpt_instance.freeze_model()
|
|
>>> mpt_instance.unfreeze_model()
|
|
|
|
"""
|
|
# Wrapping synchronous calls with async
|
|
return self.run(task, *args, **kwargs)
|
|
|
|
def __call__(self, task: str, *args, **kwargs):
|
|
"""
|
|
Generate a response based on the prompt text.
|
|
|
|
Args:
|
|
- task (str): Text to prompt the model.
|
|
- max_length (int): Maximum length of the response.
|
|
|
|
Returns:
|
|
- Generated text (str).
|
|
"""
|
|
self.load_model()
|
|
|
|
max_length = self.max_length
|
|
|
|
try:
|
|
embeddings = self.model.encode(
|
|
[task], max_length=max_length, *args, **kwargs
|
|
)
|
|
|
|
if self.cos_sim:
|
|
print(cos_sim(embeddings[0], embeddings[1]))
|
|
else:
|
|
return embeddings[0]
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to generate the text: {e}")
|
|
raise
|
|
|
|
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
|
"""Call the model asynchronously""" ""
|
|
return await self.run_async(task, *args, **kwargs)
|
|
|
|
def save_model(self, path: str):
|
|
"""Save the model to a given path"""
|
|
self.model.save_pretrained(path)
|
|
self.tokenizer.save_pretrained(path)
|
|
|
|
def gpu_available(self) -> bool:
|
|
"""Check if GPU is available"""
|
|
return torch.cuda.is_available()
|
|
|
|
def memory_consumption(self) -> dict:
|
|
"""Get the memory consumption of the GPU"""
|
|
if self.gpu_available():
|
|
torch.cuda.synchronize()
|
|
allocated = torch.cuda.memory_allocated()
|
|
reserved = torch.cuda.memory_reserved()
|
|
return {"allocated": allocated, "reserved": reserved}
|
|
else:
|
|
return {"error": "GPU not available"}
|
|
|
|
def try_embed_chunk(self, chunk: str) -> list[float]:
|
|
return super().try_embed_chunk(chunk)
|