You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/agents/reasoning_duo.py

163 lines
5.6 KiB

from typing import List, Optional
from loguru import logger
from swarms.prompts.reasoning_prompt import REASONING_PROMPT
from swarms.structs.agent import Agent
from swarms.utils.output_types import OutputType
from swarms.structs.conversation import Conversation
from swarms.utils.history_output_formatter import (
history_output_formatter,
)
import uuid
class ReasoningDuo:
"""
ReasoningDuo is a class that encapsulates the functionality of two agents: a reasoning agent and a main agent.
Attributes:
model_name (str): The name of the model used for the reasoning agent.
description (str): A description of the reasoning agent.
model_names (list[str]): A list of model names for the agents.
system_prompt (str): The system prompt for the main agent.
reasoning_agent (Agent): An instance of the Agent class for reasoning tasks.
main_agent (Agent): An instance of the Agent class for main tasks.
"""
def __init__(
self,
id: str = str(uuid.uuid4()),
agent_name: str = "reasoning-agent-01",
agent_description: str = "A highly intelligent and thoughtful AI designed to provide accurate and well-reasoned answers to the user's questions.",
model_name: str = "gpt-4o-mini",
description: str = "A highly intelligent and thoughtful AI designed to provide accurate and well-reasoned answers to the user's questions.",
model_names: list[str] = ["gpt-4o-mini", "gpt-4o"],
system_prompt: str = "You are a helpful assistant that can answer questions and help with tasks.",
output_type: OutputType = "dict-all-except-first",
reasoning_model_name: Optional[
str
] = "claude-3-5-sonnet-20240620",
max_loops: int = 1,
*args,
**kwargs,
):
self.id = id
self.agent_name = agent_name
self.agent_description = agent_description
self.model_name = model_name
self.description = description
self.output_type = output_type
self.reasoning_model_name = reasoning_model_name
self.max_loops = max_loops
if self.reasoning_model_name is None:
self.reasoning_model_name = model_names[0]
self.conversation = Conversation()
self.reasoning_agent = Agent(
agent_name=self.agent_name,
description=self.agent_description,
system_prompt=REASONING_PROMPT,
max_loops=1,
model_name=self.reasoning_model_name,
dynamic_temperature_enabled=True,
*args,
**kwargs,
)
self.main_agent = Agent(
agent_name=self.agent_name,
description=self.agent_description,
system_prompt=system_prompt,
max_loops=1,
model_name=model_names[1],
dynamic_temperature_enabled=True,
*args,
**kwargs,
)
def step(self, task: str, img: Optional[str] = None):
"""
Executes one step of reasoning and main agent processing.
Args:
task (str): The task to be processed.
img (Optional[str]): Optional image input.
"""
# For reasoning agent, use the current task (which may include conversation context)
output_reasoner = self.reasoning_agent.run(task, img=img)
self.conversation.add(
role=self.reasoning_agent.agent_name,
content=output_reasoner,
)
# For main agent, always use the full conversation context
output_main = self.main_agent.run(
task=self.conversation.get_str(), img=img
)
self.conversation.add(
role=self.main_agent.agent_name, content=output_main
)
def run(self, task: str, img: Optional[str] = None):
"""
Executes the reasoning and main agents on the provided task.
Args:
task (str): The task to be processed by the agents.
img (Optional[str]): Optional image input.
Returns:
str: The output from the main agent after processing the task.
"""
logger.info(
f"Running task: {task} with max_loops: {self.max_loops}"
)
self.conversation.add(role="user", content=task)
for loop_iteration in range(self.max_loops):
logger.info(
f"Loop iteration {loop_iteration + 1}/{self.max_loops}"
)
if loop_iteration == 0:
# First iteration: use original task
current_task = task
else:
# Subsequent iterations: use task with context of previous reasoning
current_task = f"Continue reasoning and refining your analysis. Original task: {task}\n\nPrevious conversation context:\n{self.conversation.get_str()}"
self.step(task=current_task, img=img)
return history_output_formatter(
self.conversation, self.output_type
)
def batched_run(
self, tasks: List[str], imgs: Optional[List[str]] = None
):
"""
Executes the run method for a list of tasks.
Args:
tasks (list[str]): A list of tasks to be processed.
imgs (Optional[List[str]]): Optional list of images corresponding to tasks.
Returns:
list: A list of outputs from the main agent for each task.
"""
outputs = []
# Handle case where imgs is None
if imgs is None:
imgs = [None] * len(tasks)
for task, img in zip(tasks, imgs):
logger.info(f"Processing task: {task}")
outputs.append(self.run(task, img=img))
return outputs