You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.4 KiB
197 lines
6.4 KiB
import asyncio
|
|
import os
|
|
from contextlib import contextmanager
|
|
from typing import Optional
|
|
|
|
import pandas as pd
|
|
import torch
|
|
from langchain.agents import tool
|
|
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
|
|
from langchain.chains.qa_with_sources.loading import (
|
|
BaseCombineDocumentsChain,)
|
|
from langchain.docstore.document import Document
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.tools import BaseTool
|
|
from PIL import Image
|
|
from pydantic import Field
|
|
from transformers import (
|
|
BlipForQuestionAnswering,
|
|
BlipProcessor,
|
|
)
|
|
|
|
from swarms.utils.logger import logger
|
|
|
|
ROOT_DIR = "./data/"
|
|
|
|
|
|
@contextmanager
|
|
def pushd(new_dir):
|
|
"""Context manager for changing the current working directory."""
|
|
prev_dir = os.getcwd()
|
|
os.chdir(new_dir)
|
|
try:
|
|
yield
|
|
finally:
|
|
os.chdir(prev_dir)
|
|
|
|
|
|
@tool
|
|
def process_csv(llm,
|
|
csv_file_path: str,
|
|
instructions: str,
|
|
output_path: Optional[str] = None) -> str:
|
|
"""Process a CSV by with pandas in a limited REPL.\
|
|
Only use this after writing data to disk as a csv file.\
|
|
Any figures must be saved to disk to be viewed by the human.\
|
|
Instructions should be written in natural language, not code. Assume the dataframe is already loaded."""
|
|
with pushd(ROOT_DIR):
|
|
try:
|
|
df = pd.read_csv(csv_file_path)
|
|
except Exception as e:
|
|
return f"Error: {e}"
|
|
agent = create_pandas_dataframe_agent(llm,
|
|
df,
|
|
max_iterations=30,
|
|
verbose=False)
|
|
if output_path is not None:
|
|
instructions += f" Save output to disk at {output_path}"
|
|
try:
|
|
result = agent.run(instructions)
|
|
return result
|
|
except Exception as e:
|
|
return f"Error: {e}"
|
|
|
|
|
|
async def async_load_playwright(url: str) -> str:
|
|
"""Load the specified URLs using Playwright and parse using BeautifulSoup."""
|
|
from bs4 import BeautifulSoup
|
|
from playwright.async_api import async_playwright
|
|
|
|
results = ""
|
|
async with async_playwright() as p:
|
|
browser = await p.chromium.launch(headless=True)
|
|
try:
|
|
page = await browser.new_page()
|
|
await page.goto(url)
|
|
|
|
page_source = await page.content()
|
|
soup = BeautifulSoup(page_source, "html.parser")
|
|
|
|
for script in soup(["script", "style"]):
|
|
script.extract()
|
|
|
|
text = soup.get_text()
|
|
lines = (line.strip() for line in text.splitlines())
|
|
chunks = (
|
|
phrase.strip() for line in lines for phrase in line.split(" "))
|
|
results = "\n".join(chunk for chunk in chunks if chunk)
|
|
except Exception as e:
|
|
results = f"Error: {e}"
|
|
await browser.close()
|
|
return results
|
|
|
|
|
|
def run_async(coro):
|
|
event_loop = asyncio.get_event_loop()
|
|
return event_loop.run_until_complete(coro)
|
|
|
|
|
|
@tool
|
|
def browse_web_page(url: str) -> str:
|
|
"""Verbose way to scrape a whole webpage. Likely to cause issues parsing."""
|
|
return run_async(async_load_playwright(url))
|
|
|
|
|
|
def _get_text_splitter():
|
|
return RecursiveCharacterTextSplitter(
|
|
# Set a really small chunk size, just to show.
|
|
chunk_size=500,
|
|
chunk_overlap=20,
|
|
length_function=len,
|
|
)
|
|
|
|
|
|
class WebpageQATool(BaseTool):
|
|
name = "query_webpage"
|
|
description = (
|
|
"Browse a webpage and retrieve the information relevant to the question."
|
|
)
|
|
text_splitter: RecursiveCharacterTextSplitter = Field(
|
|
default_factory=_get_text_splitter)
|
|
qa_chain: BaseCombineDocumentsChain
|
|
|
|
def _run(self, url: str, question: str) -> str:
|
|
"""Useful for browsing websites and scraping the text information."""
|
|
result = browse_web_page.run(url)
|
|
docs = [Document(page_content=result, metadata={"source": url})]
|
|
web_docs = self.text_splitter.split_documents(docs)
|
|
results = []
|
|
# TODO: Handle this with a MapReduceChain
|
|
for i in range(0, len(web_docs), 4):
|
|
input_docs = web_docs[i:i + 4]
|
|
window_result = self.qa_chain(
|
|
{
|
|
"input_documents": input_docs,
|
|
"question": question
|
|
},
|
|
return_only_outputs=True,
|
|
)
|
|
results.append(f"Response from window {i} - {window_result}")
|
|
results_docs = [
|
|
Document(page_content="\n".join(results), metadata={"source": url})
|
|
]
|
|
return self.qa_chain(
|
|
{
|
|
"input_documents": results_docs,
|
|
"question": question
|
|
},
|
|
return_only_outputs=True,
|
|
)
|
|
|
|
async def _arun(self, url: str, question: str) -> str:
|
|
raise NotImplementedError
|
|
|
|
|
|
class EdgeGPTTool:
|
|
# Initialize the custom tool
|
|
def __init__(
|
|
self,
|
|
model,
|
|
name="EdgeGPTTool",
|
|
description="Tool that uses EdgeGPTModel to generate responses",
|
|
):
|
|
super().__init__(name=name, description=description)
|
|
self.model = model
|
|
|
|
def _run(self, prompt):
|
|
return self.model.__call__(prompt)
|
|
|
|
|
|
@tool
|
|
def VQAinference(self, inputs):
|
|
"""
|
|
Answer Question About The Image, VQA Multi-Modal Worker agent
|
|
description="useful when you need an answer for a question based on an image. "
|
|
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
|
|
"The input to this tool should be a comma separated string of two, representing the image_path and the question",
|
|
|
|
"""
|
|
device = "cuda:0"
|
|
torch_dtype = torch.float16 if "cuda" in device else torch.float32
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
|
model = BlipForQuestionAnswering.from_pretrained(
|
|
"Salesforce/blip-vqa-base", torch_dtype=torch_dtype).to(device)
|
|
|
|
image_path, question = inputs.split(",")
|
|
raw_image = Image.open(image_path).convert("RGB")
|
|
inputs = processor(raw_image, question,
|
|
return_tensors="pt").to(device, torch_dtype)
|
|
out = model.generate(**inputs)
|
|
answer = processor.decode(out[0], skip_special_tokens=True)
|
|
|
|
logger.debug(
|
|
f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input"
|
|
f" Question: {question}, Output Answer: {answer}")
|
|
|
|
return answer
|