You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.4 KiB
186 lines
6.4 KiB
import json
|
|
from typing import List
|
|
|
|
from langchain.tools.base import BaseTool
|
|
|
|
FINISH_NAME = "finish"
|
|
|
|
|
|
class PromptGenerator:
|
|
"""A class for generating custom prompt strings.
|
|
|
|
Does this based on constraints, commands, resources, and performance evaluations.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
"""Initialize the PromptGenerator object.
|
|
|
|
Starts with empty lists of constraints, commands, resources,
|
|
and performance evaluations.
|
|
"""
|
|
self.constraints: List[str] = []
|
|
self.commands: List[BaseTool] = []
|
|
self.resources: List[str] = []
|
|
self.performance_evaluation: List[str] = []
|
|
self.response_format = {
|
|
"thoughts": {
|
|
"text": "thought",
|
|
"reasoning": "reasoning",
|
|
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
|
"criticism": "constructive self-criticism",
|
|
"speak": "thoughts summary to say to user",
|
|
},
|
|
"command": {"name": "command name", "args": {"arg name": "value"}},
|
|
}
|
|
|
|
def add_constraint(self, constraint: str) -> None:
|
|
"""
|
|
Add a constraint to the constraints list.
|
|
|
|
Args:
|
|
constraint (str): The constraint to be added.
|
|
"""
|
|
self.constraints.append(constraint)
|
|
|
|
def add_tool(self, tool: BaseTool) -> None:
|
|
self.commands.append(tool)
|
|
|
|
def _generate_command_string(self, tool: BaseTool) -> str:
|
|
output = f"{tool.name}: {tool.description}"
|
|
output += f", args json schema: {json.dumps(tool.args)}"
|
|
return output
|
|
|
|
def add_resource(self, resource: str) -> None:
|
|
"""
|
|
Add a resource to the resources list.
|
|
|
|
Args:
|
|
resource (str): The resource to be added.
|
|
"""
|
|
self.resources.append(resource)
|
|
|
|
def add_performance_evaluation(self, evaluation: str) -> None:
|
|
"""
|
|
Add a performance evaluation item to the performance_evaluation list.
|
|
|
|
Args:
|
|
evaluation (str): The evaluation item to be added.
|
|
"""
|
|
self.performance_evaluation.append(evaluation)
|
|
|
|
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
|
|
"""
|
|
Generate a numbered list from given items based on the item_type.
|
|
|
|
Args:
|
|
items (list): A list of items to be numbered.
|
|
item_type (str, optional): The type of items in the list.
|
|
Defaults to 'list'.
|
|
|
|
Returns:
|
|
str: The formatted numbered list.
|
|
"""
|
|
if item_type == "command":
|
|
command_strings = [
|
|
f"{i + 1}. {self._generate_command_string(item)}"
|
|
for i, item in enumerate(items)
|
|
]
|
|
finish_description = (
|
|
"use this to signal that you have finished all your objectives"
|
|
)
|
|
finish_args = (
|
|
'"response": "final response to let '
|
|
'people know you have finished your objectives"'
|
|
)
|
|
finish_string = (
|
|
f"{len(items) + 1}. {FINISH_NAME}: "
|
|
f"{finish_description}, args: {finish_args}"
|
|
)
|
|
return "\n".join(command_strings + [finish_string])
|
|
else:
|
|
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
|
|
|
def generate_prompt_string(self) -> str:
|
|
"""Generate a prompt string.
|
|
|
|
Returns:
|
|
str: The generated prompt string.
|
|
"""
|
|
formatted_response_format = json.dumps(self.response_format, indent=4)
|
|
prompt_string = (
|
|
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
|
|
f"Commands:\n"
|
|
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
|
|
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
|
|
f"Performance Evaluation:\n"
|
|
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
|
|
f"You should only respond in JSON format as described below "
|
|
f"\nResponse Format: \n{formatted_response_format} "
|
|
f"\nEnsure the response can be parsed by Python json.loads"
|
|
)
|
|
|
|
return prompt_string
|
|
|
|
|
|
def get_prompt(tools: List[BaseTool]) -> str:
|
|
"""Generates a prompt string.
|
|
|
|
It includes various constraints, commands, resources, and performance evaluations.
|
|
|
|
Returns:
|
|
str: The generated prompt string.
|
|
"""
|
|
|
|
# Initialize the PromptGenerator object
|
|
prompt_generator = PromptGenerator()
|
|
|
|
# Add constraints to the PromptGenerator object
|
|
prompt_generator.add_constraint(
|
|
"~4000 word limit for short term memory. "
|
|
"Your short term memory is short, "
|
|
"so immediately save important information to files."
|
|
)
|
|
prompt_generator.add_constraint(
|
|
"If you are unsure how you previously did something "
|
|
"or want to recall past events, "
|
|
"thinking about similar events will help you remember."
|
|
)
|
|
prompt_generator.add_constraint("No user assistance")
|
|
prompt_generator.add_constraint(
|
|
'Exclusively use the commands listed in double quotes e.g. "command name"'
|
|
)
|
|
|
|
# Add commands to the PromptGenerator object
|
|
for tool in tools:
|
|
prompt_generator.add_tool(tool)
|
|
|
|
# Add resources to the PromptGenerator object
|
|
prompt_generator.add_resource(
|
|
"Internet access for searches and information gathering."
|
|
)
|
|
prompt_generator.add_resource("Long Term memory management.")
|
|
prompt_generator.add_resource(
|
|
"GPT-3.5 powered Agents for delegation of simple tasks."
|
|
)
|
|
prompt_generator.add_resource("File output.")
|
|
|
|
# Add performance evaluations to the PromptGenerator object
|
|
prompt_generator.add_performance_evaluation(
|
|
"Continuously review and analyze your actions "
|
|
"to ensure you are performing to the best of your abilities."
|
|
)
|
|
prompt_generator.add_performance_evaluation(
|
|
"Constructively self-criticize your big-picture behavior constantly."
|
|
)
|
|
prompt_generator.add_performance_evaluation(
|
|
"Reflect on past decisions and strategies to refine your approach."
|
|
)
|
|
prompt_generator.add_performance_evaluation(
|
|
"Every command has a cost, so be smart and efficient. "
|
|
"Aim to complete tasks in the least number of steps."
|
|
)
|
|
|
|
# Generate the prompt string
|
|
prompt_string = prompt_generator.generate_prompt_string()
|
|
|
|
return prompt_string |