You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Kye
2cccb8e424
|
1 year ago | |
---|---|---|
.. | ||
README.md | 1 year ago |
README.md
Swarms Documentation
====================
Language Models
Language models are the driving force of our agents. They are responsible for generating text based on a given prompt. We currently support two types of language models: Anthropic and HuggingFace.
Anthropic
The Anthropic
class is a wrapper for the Anthropic large language models.
Initialization
Anthropic(model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None)
Copy code
Parameters
model
(str, optional): The name of the model to use. Default is "claude-2".max_tokens_to_sample
(int, optional): The maximum number of tokens to sample. Default is 256.temperature
(float, optional): The temperature to use for the generation. Higher values result in more random outputs.top_k
(int, optional): The number of top tokens to consider for the generation.top_p
(float, optional): The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling.streaming
(bool, optional): Whether to use streaming mode. Default is False.default_request_timeout
(int, optional): The default request timeout in seconds. Default is 600.
Example
anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8)
Copy code
Generation
anthropic.generate(prompt, stop=None)
Copy code
Parameters
prompt
(str): The prompt to use for the generation.stop
(list, optional): A list of stop sequences. The generation will stop if one of these sequences is encountered.
Returns
str
: The generated text.
Example
prompt = "Once upon a time"
stop = ["The end"]
print(anthropic.generate(prompt, stop))
Copy code
HuggingFaceLLM
The HuggingFaceLLM
class is a wrapper for the HuggingFace language models.
Initialization
HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None)
Copy code
Parameters
model_id
(str): The ID of the model to use.device
(str, optional): The device to use for the generation. Default is "cuda" if available, otherwise "cpu".max_length
(int, optional): The maximum length of the generated text. Default is 20.quantize
(bool, optional): Whether to quantize the model. Default is False.quantization_config
(dict, optional): The configuration for the quantization.
Example
huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50)
Copy code
Generation
huggingface.generate(prompt_text: str, max_length: int = None)
Copy code
Parameters
prompt_text
(str): The prompt to use for the generation.max_length
(int, optional): The maximum length of the generated text. If not provided, the default value specified during initialization is used.
Returns
str
: The generated text.
Example
prompt = "Once upon a time"
print(huggingface.generate(prompt))