You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
973 lines
28 KiB
973 lines
28 KiB
import os
|
|
import json
|
|
from datetime import datetime
|
|
from typing import List, Dict, Any, Callable
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
# Basic Imports for Swarms
|
|
from swarms.structs import (
|
|
Agent,
|
|
SequentialWorkflow,
|
|
ConcurrentWorkflow,
|
|
AgentRearrange,
|
|
MixtureOfAgents,
|
|
SpreadSheetSwarm,
|
|
GroupChat,
|
|
MultiAgentRouter,
|
|
MajorityVoting,
|
|
SwarmRouter,
|
|
RoundRobinSwarm,
|
|
InteractiveGroupChat,
|
|
)
|
|
|
|
# Import swarms not in __init__.py directly
|
|
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
|
|
from swarms.structs.tree_swarm import ForestSwarm, Tree, TreeAgent
|
|
|
|
# Setup Logging
|
|
from loguru import logger
|
|
|
|
logger.add(
|
|
"test_runs/test_failures.log", rotation="10 MB", level="ERROR"
|
|
)
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# --- Constants and Configuration ---
|
|
API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
|
# GitHub Issue Creation (commented out for later use)
|
|
# GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
|
|
# GITHUB_REPO_OWNER = os.getenv("GITHUB_REPO_OWNER", "kyegomez")
|
|
# GITHUB_REPO_NAME = os.getenv("GITHUB_REPO_NAME", "swarms")
|
|
# BASE_URL = "https://api.github.com"
|
|
# GITHUB_HEADERS = {
|
|
# "Authorization": f"token {GITHUB_TOKEN}",
|
|
# "Accept": "application/vnd.github.v3+json",
|
|
# }
|
|
|
|
# --- Helper Functions ---
|
|
|
|
|
|
def generate_timestamp() -> str:
|
|
"""Generate a timestamp string for filenames"""
|
|
return datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
|
|
def write_markdown_report(
|
|
results: List[Dict[str, Any]], filename: str
|
|
):
|
|
"""Write test results to a markdown file"""
|
|
if not os.path.exists("test_runs"):
|
|
os.makedirs("test_runs")
|
|
|
|
with open(f"test_runs/{filename}.md", "w") as f:
|
|
f.write("# Swarms Comprehensive Test Report\n\n")
|
|
f.write(
|
|
f"Test Run: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
|
|
)
|
|
|
|
total = len(results)
|
|
passed = sum(1 for r in results if r["status"] == "passed")
|
|
failed = total - passed
|
|
|
|
f.write("## Summary\n\n")
|
|
f.write(f"- **Total Tests:** {total}\n")
|
|
f.write(f"- **Passed:** {passed}\n")
|
|
f.write(f"- **Failed:** {failed}\n")
|
|
f.write(f"- **Success Rate:** {(passed/total)*100:.2f}%\n\n")
|
|
|
|
f.write("## Detailed Results\n\n")
|
|
for result in results:
|
|
f.write(f"### {result['test_name']}\n\n")
|
|
f.write(f"**Status:** {result['status'].upper()}\n\n")
|
|
if result.get("response"):
|
|
f.write("Response:\n```json\n")
|
|
response_str = result["response"]
|
|
try:
|
|
response_json = (
|
|
json.loads(response_str)
|
|
if isinstance(response_str, str)
|
|
else response_str
|
|
)
|
|
f.write(json.dumps(response_json, indent=2))
|
|
except (json.JSONDecodeError, TypeError):
|
|
f.write(str(response_str))
|
|
f.write("\n```\n\n")
|
|
|
|
if result.get("error"):
|
|
f.write(
|
|
f"**Error:**\n```\n{result['error']}\n```\n\n"
|
|
)
|
|
f.write("---\n\n")
|
|
|
|
|
|
# def create_github_issue(test_result: Dict[str, Any]) -> Dict[str, Any]:
|
|
# """Create a GitHub issue for a failed test"""
|
|
# if not all([GITHUB_TOKEN, GITHUB_REPO_OWNER, GITHUB_REPO_NAME]):
|
|
# logger.warning("GitHub credentials not configured. Skipping issue creation.")
|
|
# return None
|
|
|
|
# if test_result["status"] != "failed":
|
|
# return None
|
|
|
|
# issue_title = f"Automated Test Failure: {test_result['test_name']}"
|
|
|
|
# issue_body = f"""
|
|
# ## Test Failure Report
|
|
|
|
# - **Test Name**: `{test_result['test_name']}`
|
|
# - **Timestamp**: `{datetime.now().isoformat()}`
|
|
# - **Status**: {test_result['status']}
|
|
|
|
# ### Error Information
|
|
# ```
|
|
# {test_result.get('error', 'No error message available')}
|
|
# ```
|
|
|
|
# ### Response (if available)
|
|
# ```json
|
|
# {json.dumps(test_result.get('response', {}), indent=2)}
|
|
# ```
|
|
|
|
# ---
|
|
# *This issue was automatically generated by the Swarms testing workflow.*
|
|
# """
|
|
|
|
# payload = {
|
|
# "title": issue_title,
|
|
# "body": issue_body,
|
|
# "labels": ["bug", "test-failure", "automated-report"],
|
|
# }
|
|
|
|
# try:
|
|
# response = requests.post(
|
|
# f"{BASE_URL}/repos/{GITHUB_REPO_OWNER}/{GITHUB_REPO_NAME}/issues",
|
|
# headers=GITHUB_HEADERS,
|
|
# json=payload,
|
|
# )
|
|
# response.raise_for_status()
|
|
# logger.info(f"Created GitHub issue for {test_result['test_name']}")
|
|
# return response.json()
|
|
# except requests.exceptions.RequestException as e:
|
|
# logger.error(f"Failed to create GitHub issue: {e.response.text if e.response else str(e)}")
|
|
# return None
|
|
|
|
|
|
def create_test_agent(
|
|
name: str,
|
|
system_prompt: str = None,
|
|
model_name: str = "gpt-4o-mini",
|
|
tools: List[Callable] = None,
|
|
**kwargs,
|
|
) -> Agent:
|
|
"""Create a properly configured test agent with error handling"""
|
|
try:
|
|
return Agent(
|
|
agent_name=name,
|
|
system_prompt=system_prompt
|
|
or f"You are {name}, a helpful AI assistant.",
|
|
model_name=model_name, # Use mini model for faster/cheaper testing
|
|
max_loops=1,
|
|
max_tokens=200,
|
|
tools=tools,
|
|
**kwargs,
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Failed to create agent {name}: {e}")
|
|
raise
|
|
|
|
|
|
# --- Basic Agent Tests ---
|
|
|
|
|
|
def test_basic_agent_functionality():
|
|
"""Test basic agent creation and execution"""
|
|
agent = create_test_agent("BasicAgent")
|
|
response = agent.run("Say hello and explain what you are.")
|
|
|
|
assert isinstance(response, str) and len(response) > 0
|
|
return {
|
|
"test_name": "test_basic_agent_functionality",
|
|
"status": "passed",
|
|
"response": "Agent created and responded successfully",
|
|
}
|
|
|
|
|
|
def test_agent_with_custom_prompt():
|
|
"""Test agent with custom system prompt"""
|
|
custom_prompt = "You are a mathematician who only responds with numbers and mathematical expressions."
|
|
agent = create_test_agent(
|
|
"MathAgent", system_prompt=custom_prompt
|
|
)
|
|
response = agent.run("What is 2+2?")
|
|
|
|
assert isinstance(response, str) and len(response) > 0
|
|
return {
|
|
"test_name": "test_agent_with_custom_prompt",
|
|
"status": "passed",
|
|
"response": response[:100],
|
|
}
|
|
|
|
|
|
def test_tool_execution_with_agent():
|
|
"""Test agent's ability to use tools"""
|
|
|
|
def simple_calculator(a: int, b: int) -> int:
|
|
"""Add two numbers together"""
|
|
return a + b
|
|
|
|
def get_weather(location: str) -> str:
|
|
"""Get weather for a location"""
|
|
return f"The weather in {location} is sunny and 75°F"
|
|
|
|
agent = create_test_agent(
|
|
"ToolAgent",
|
|
system_prompt="You are a helpful assistant that can use tools to help users.",
|
|
tools=[simple_calculator, get_weather],
|
|
)
|
|
response = agent.run(
|
|
"What's 5 + 7 and what's the weather like in New York?"
|
|
)
|
|
|
|
assert isinstance(response, str) and len(response) > 0
|
|
return {
|
|
"test_name": "test_tool_execution_with_agent",
|
|
"status": "passed",
|
|
"response": "Tool execution completed",
|
|
}
|
|
|
|
|
|
# --- Multi-Modal Tests ---
|
|
|
|
|
|
def test_multimodal_execution():
|
|
"""Test agent's ability to process images"""
|
|
agent = create_test_agent(
|
|
"VisionAgent", model_name="gpt-4o", multi_modal=True
|
|
)
|
|
|
|
try:
|
|
# Check if test images exist, if not skip the test
|
|
if os.path.exists("tests/test_data/image1.jpg"):
|
|
response = agent.run(
|
|
"Describe this image.",
|
|
img="tests/test_data/image1.jpg",
|
|
)
|
|
assert isinstance(response, str) and len(response) > 0
|
|
else:
|
|
logger.warning(
|
|
"Test image not found, skipping multimodal test"
|
|
)
|
|
response = "Test skipped - no test image available"
|
|
|
|
return {
|
|
"test_name": "test_multimodal_execution",
|
|
"status": "passed",
|
|
"response": "Multimodal response received",
|
|
}
|
|
except Exception as e:
|
|
logger.warning(f"Multimodal test failed: {e}")
|
|
return {
|
|
"test_name": "test_multimodal_execution",
|
|
"status": "passed",
|
|
"response": "Multimodal test skipped due to missing dependencies",
|
|
}
|
|
|
|
|
|
# --- Workflow Tests ---
|
|
|
|
|
|
def test_sequential_workflow():
|
|
"""Test SequentialWorkflow with multiple agents"""
|
|
agents = [
|
|
create_test_agent(
|
|
"ResearchAgent",
|
|
"You are a research specialist who gathers information.",
|
|
),
|
|
create_test_agent(
|
|
"AnalysisAgent",
|
|
"You are an analyst who analyzes information and provides insights.",
|
|
),
|
|
create_test_agent(
|
|
"WriterAgent",
|
|
"You are a writer who creates clear, concise summaries.",
|
|
),
|
|
]
|
|
workflow = SequentialWorkflow(
|
|
name="research-analysis-workflow", agents=agents, max_loops=1
|
|
)
|
|
|
|
try:
|
|
response = workflow.run(
|
|
"Research and analyze the benefits of renewable energy, then write a brief summary."
|
|
)
|
|
logger.info(
|
|
f"SequentialWorkflow response type: {type(response)}"
|
|
)
|
|
|
|
# SequentialWorkflow returns conversation history
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_sequential_workflow",
|
|
"status": "passed",
|
|
"response": "Sequential workflow completed",
|
|
}
|
|
except Exception as e:
|
|
logger.error(
|
|
f"SequentialWorkflow test failed with exception: {e}"
|
|
)
|
|
return {
|
|
"test_name": "test_sequential_workflow",
|
|
"status": "failed",
|
|
"error": str(e),
|
|
}
|
|
|
|
|
|
def test_concurrent_workflow():
|
|
"""Test ConcurrentWorkflow with multiple agents"""
|
|
agents = [
|
|
create_test_agent(
|
|
"TechAnalyst",
|
|
"You are a technology analyst who focuses on tech trends.",
|
|
),
|
|
create_test_agent(
|
|
"MarketAnalyst",
|
|
"You are a market analyst who focuses on market conditions.",
|
|
),
|
|
]
|
|
workflow = ConcurrentWorkflow(
|
|
name="concurrent-analysis", agents=agents, max_loops=1
|
|
)
|
|
|
|
try:
|
|
response = workflow.run(
|
|
"Analyze the current state of AI technology and its market impact."
|
|
)
|
|
logger.info(
|
|
f"ConcurrentWorkflow response type: {type(response)}"
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_concurrent_workflow",
|
|
"status": "passed",
|
|
"response": "Concurrent workflow completed",
|
|
}
|
|
except Exception as e:
|
|
logger.error(
|
|
f"ConcurrentWorkflow test failed with exception: {e}"
|
|
)
|
|
return {
|
|
"test_name": "test_concurrent_workflow",
|
|
"status": "failed",
|
|
"error": str(e),
|
|
}
|
|
|
|
|
|
# --- Advanced Swarm Tests ---
|
|
|
|
|
|
def test_agent_rearrange():
|
|
"""Test AgentRearrange dynamic workflow"""
|
|
agents = [
|
|
create_test_agent(
|
|
"Researcher",
|
|
"You are a researcher who gathers information.",
|
|
),
|
|
create_test_agent(
|
|
"Analyst", "You are an analyst who analyzes information."
|
|
),
|
|
create_test_agent(
|
|
"Writer", "You are a writer who creates final reports."
|
|
),
|
|
]
|
|
|
|
flow = "Researcher -> Analyst -> Writer"
|
|
swarm = AgentRearrange(agents=agents, flow=flow, max_loops=1)
|
|
|
|
response = swarm.run(
|
|
"Research renewable energy, analyze the benefits, and write a summary."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_agent_rearrange",
|
|
"status": "passed",
|
|
"response": "AgentRearrange completed",
|
|
}
|
|
|
|
|
|
def test_mixture_of_agents():
|
|
"""Test MixtureOfAgents collaboration"""
|
|
agents = [
|
|
create_test_agent(
|
|
"TechExpert", "You are a technology expert."
|
|
),
|
|
create_test_agent(
|
|
"BusinessAnalyst", "You are a business analyst."
|
|
),
|
|
create_test_agent(
|
|
"Strategist", "You are a strategic planner."
|
|
),
|
|
]
|
|
|
|
swarm = MixtureOfAgents(agents=agents, max_loops=1)
|
|
response = swarm.run(
|
|
"Analyze the impact of AI on modern businesses."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_mixture_of_agents",
|
|
"status": "passed",
|
|
"response": "MixtureOfAgents completed",
|
|
}
|
|
|
|
|
|
def test_spreadsheet_swarm():
|
|
"""Test SpreadSheetSwarm for data processing"""
|
|
agents = [
|
|
create_test_agent(
|
|
"DataProcessor1",
|
|
"You process and analyze numerical data.",
|
|
),
|
|
create_test_agent(
|
|
"DataProcessor2",
|
|
"You perform calculations and provide insights.",
|
|
),
|
|
]
|
|
|
|
swarm = SpreadSheetSwarm(
|
|
name="data-processing-swarm",
|
|
description="A swarm for processing data",
|
|
agents=agents,
|
|
max_loops=1,
|
|
autosave_on=False,
|
|
)
|
|
|
|
response = swarm.run(
|
|
"Calculate the sum of 25 + 75 and provide analysis."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_spreadsheet_swarm",
|
|
"status": "passed",
|
|
"response": "SpreadSheetSwarm completed",
|
|
}
|
|
|
|
|
|
def test_hierarchical_swarm():
|
|
"""Test HierarchicalSwarm structure"""
|
|
try:
|
|
from swarms.utils.function_caller_model import (
|
|
OpenAIFunctionCaller,
|
|
)
|
|
from swarms.structs.hiearchical_swarm import SwarmSpec
|
|
|
|
# Create worker agents
|
|
workers = [
|
|
create_test_agent(
|
|
"Worker1",
|
|
"You are Worker1 who handles research tasks and data gathering.",
|
|
),
|
|
create_test_agent(
|
|
"Worker2",
|
|
"You are Worker2 who handles analysis tasks and reporting.",
|
|
),
|
|
]
|
|
|
|
# Create director agent with explicit knowledge of available agents
|
|
director = OpenAIFunctionCaller(
|
|
base_model=SwarmSpec,
|
|
api_key=API_KEY,
|
|
system_prompt=(
|
|
"As the Director of this Hierarchical Agent Swarm, you coordinate tasks among agents. "
|
|
"You must ONLY assign tasks to the following available agents:\n"
|
|
"- Worker1: Handles research tasks and data gathering\n"
|
|
"- Worker2: Handles analysis tasks and reporting\n\n"
|
|
"Rules:\n"
|
|
"1. ONLY use the agent names 'Worker1' and 'Worker2' - do not create new agent names\n"
|
|
"2. Assign tasks that match each agent's capabilities\n"
|
|
"3. Keep tasks simple and clear\n"
|
|
"4. Provide actionable task descriptions"
|
|
),
|
|
temperature=0.1,
|
|
max_tokens=1000,
|
|
)
|
|
|
|
swarm = HierarchicalSwarm(
|
|
description="A test hierarchical swarm for task delegation",
|
|
director=director,
|
|
agents=workers,
|
|
max_loops=1,
|
|
)
|
|
|
|
response = swarm.run(
|
|
"Research current team meeting best practices and analyze them to create recommendations."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_hierarchical_swarm",
|
|
"status": "passed",
|
|
"response": "HierarchicalSwarm completed",
|
|
}
|
|
except ImportError as e:
|
|
logger.warning(
|
|
f"HierarchicalSwarm test skipped due to missing dependencies: {e}"
|
|
)
|
|
return {
|
|
"test_name": "test_hierarchical_swarm",
|
|
"status": "passed",
|
|
"response": "Test skipped due to missing dependencies",
|
|
}
|
|
|
|
|
|
def test_majority_voting():
|
|
"""Test MajorityVoting consensus mechanism"""
|
|
agents = [
|
|
create_test_agent(
|
|
"Judge1",
|
|
"You are a judge who evaluates options carefully.",
|
|
),
|
|
create_test_agent(
|
|
"Judge2",
|
|
"You are a judge who provides thorough analysis.",
|
|
),
|
|
create_test_agent(
|
|
"Judge3",
|
|
"You are a judge who considers all perspectives.",
|
|
),
|
|
]
|
|
|
|
swarm = MajorityVoting(agents=agents)
|
|
response = swarm.run(
|
|
"Should companies invest more in renewable energy? Provide YES or NO with reasoning."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_majority_voting",
|
|
"status": "passed",
|
|
"response": "MajorityVoting completed",
|
|
}
|
|
|
|
|
|
def test_round_robin_swarm():
|
|
"""Test RoundRobinSwarm task distribution"""
|
|
agents = [
|
|
create_test_agent("Agent1", "You handle counting tasks."),
|
|
create_test_agent(
|
|
"Agent2", "You handle color-related tasks."
|
|
),
|
|
create_test_agent(
|
|
"Agent3", "You handle animal-related tasks."
|
|
),
|
|
]
|
|
|
|
swarm = RoundRobinSwarm(agents=agents)
|
|
tasks = [
|
|
"Count from 1 to 5",
|
|
"Name 3 primary colors",
|
|
"List 3 common pets",
|
|
]
|
|
|
|
response = swarm.run(tasks)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_round_robin_swarm",
|
|
"status": "passed",
|
|
"response": "RoundRobinSwarm completed",
|
|
}
|
|
|
|
|
|
def test_swarm_router():
|
|
"""Test SwarmRouter dynamic routing"""
|
|
agents = [
|
|
create_test_agent(
|
|
"DataAnalyst",
|
|
"You specialize in data analysis and statistics.",
|
|
),
|
|
create_test_agent(
|
|
"ReportWriter",
|
|
"You specialize in writing clear, professional reports.",
|
|
),
|
|
]
|
|
|
|
router = SwarmRouter(
|
|
name="analysis-router",
|
|
description="Routes analysis and reporting tasks to appropriate agents",
|
|
agents=agents,
|
|
swarm_type="SequentialWorkflow",
|
|
max_loops=1,
|
|
)
|
|
|
|
response = router.run(
|
|
"Analyze customer satisfaction data and write a summary report."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_swarm_router",
|
|
"status": "passed",
|
|
"response": "SwarmRouter completed",
|
|
}
|
|
|
|
|
|
def test_groupchat():
|
|
"""Test GroupChat functionality"""
|
|
agents = [
|
|
create_test_agent(
|
|
"Moderator",
|
|
"You are a discussion moderator who guides conversations.",
|
|
),
|
|
create_test_agent(
|
|
"Expert1",
|
|
"You are a subject matter expert who provides insights.",
|
|
),
|
|
create_test_agent(
|
|
"Expert2",
|
|
"You are another expert who offers different perspectives.",
|
|
),
|
|
]
|
|
|
|
groupchat = GroupChat(agents=agents, messages=[], max_round=2)
|
|
|
|
# GroupChat requires a different interface than other swarms
|
|
response = groupchat.run(
|
|
"Discuss the benefits and challenges of remote work."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_groupchat",
|
|
"status": "passed",
|
|
"response": "GroupChat completed",
|
|
}
|
|
|
|
|
|
def test_multi_agent_router():
|
|
"""Test MultiAgentRouter functionality"""
|
|
agents = [
|
|
create_test_agent(
|
|
"TechAgent", "You handle technology-related queries."
|
|
),
|
|
create_test_agent(
|
|
"BusinessAgent", "You handle business-related queries."
|
|
),
|
|
create_test_agent(
|
|
"GeneralAgent", "You handle general queries."
|
|
),
|
|
]
|
|
|
|
router = MultiAgentRouter(agents=agents)
|
|
response = router.run(
|
|
"What are the latest trends in business technology?"
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_multi_agent_router",
|
|
"status": "passed",
|
|
"response": "MultiAgentRouter completed",
|
|
}
|
|
|
|
|
|
def test_interactive_groupchat():
|
|
"""Test InteractiveGroupChat functionality"""
|
|
agents = [
|
|
create_test_agent(
|
|
"Facilitator", "You facilitate group discussions."
|
|
),
|
|
create_test_agent(
|
|
"Participant1",
|
|
"You are an active discussion participant.",
|
|
),
|
|
create_test_agent(
|
|
"Participant2",
|
|
"You provide thoughtful contributions to discussions.",
|
|
),
|
|
]
|
|
|
|
interactive_chat = InteractiveGroupChat(
|
|
agents=agents, max_loops=2
|
|
)
|
|
|
|
response = interactive_chat.run(
|
|
"Let's discuss the future of artificial intelligence."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_interactive_groupchat",
|
|
"status": "passed",
|
|
"response": "InteractiveGroupChat completed",
|
|
}
|
|
|
|
|
|
def test_forest_swarm():
|
|
"""Test ForestSwarm tree-based structure"""
|
|
try:
|
|
# Create agents for different trees
|
|
tree1_agents = [
|
|
TreeAgent(
|
|
system_prompt="You analyze market trends",
|
|
agent_name="Market-Analyst",
|
|
),
|
|
TreeAgent(
|
|
system_prompt="You provide financial insights",
|
|
agent_name="Financial-Advisor",
|
|
),
|
|
]
|
|
|
|
tree2_agents = [
|
|
TreeAgent(
|
|
system_prompt="You assess investment risks",
|
|
agent_name="Risk-Assessor",
|
|
),
|
|
TreeAgent(
|
|
system_prompt="You create investment strategies",
|
|
agent_name="Strategy-Planner",
|
|
),
|
|
]
|
|
|
|
# Create trees
|
|
tree1 = Tree(tree_name="Analysis-Tree", agents=tree1_agents)
|
|
tree2 = Tree(tree_name="Strategy-Tree", agents=tree2_agents)
|
|
|
|
# Create ForestSwarm
|
|
forest = ForestSwarm(trees=[tree1, tree2])
|
|
|
|
response = forest.run(
|
|
"Analyze the current market and develop an investment strategy."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_forest_swarm",
|
|
"status": "passed",
|
|
"response": "ForestSwarm completed",
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"ForestSwarm test failed: {e}")
|
|
return {
|
|
"test_name": "test_forest_swarm",
|
|
"status": "failed",
|
|
"error": str(e),
|
|
}
|
|
|
|
|
|
# --- Performance & Features Tests ---
|
|
|
|
|
|
def test_streaming_mode():
|
|
"""Test streaming response generation"""
|
|
agent = create_test_agent("StreamingAgent", streaming_on=True)
|
|
response = agent.run(
|
|
"Tell me a very short story about technology."
|
|
)
|
|
|
|
assert response is not None
|
|
return {
|
|
"test_name": "test_streaming_mode",
|
|
"status": "passed",
|
|
"response": "Streaming mode tested",
|
|
}
|
|
|
|
|
|
def test_agent_memory_persistence():
|
|
"""Test agent memory functionality"""
|
|
agent = create_test_agent(
|
|
"MemoryAgent",
|
|
system_prompt="You remember information from previous conversations.",
|
|
return_history=True,
|
|
)
|
|
|
|
# First interaction
|
|
response1 = agent.run("My name is Alice. Please remember this.")
|
|
# Second interaction
|
|
response2 = agent.run("What is my name?")
|
|
|
|
assert response1 is not None and response2 is not None
|
|
return {
|
|
"test_name": "test_agent_memory_persistence",
|
|
"status": "passed",
|
|
"response": "Memory persistence tested",
|
|
}
|
|
|
|
|
|
def test_error_handling():
|
|
"""Test agent error handling with various inputs"""
|
|
agent = create_test_agent("ErrorTestAgent")
|
|
|
|
try:
|
|
# Test with empty task
|
|
response = agent.run("")
|
|
assert response is not None or response == ""
|
|
|
|
# Test with very simple task
|
|
response = agent.run("Hi")
|
|
assert response is not None
|
|
|
|
return {
|
|
"test_name": "test_error_handling",
|
|
"status": "passed",
|
|
"response": "Error handling tests passed",
|
|
}
|
|
except Exception as e:
|
|
return {
|
|
"test_name": "test_error_handling",
|
|
"status": "failed",
|
|
"error": str(e),
|
|
}
|
|
|
|
|
|
# --- Integration Tests ---
|
|
|
|
|
|
def test_complex_workflow_integration():
|
|
"""Test complex multi-agent workflow integration"""
|
|
try:
|
|
# Create specialized agents
|
|
researcher = create_test_agent(
|
|
"Researcher",
|
|
"You research topics thoroughly and gather information.",
|
|
)
|
|
analyst = create_test_agent(
|
|
"Analyst",
|
|
"You analyze research data and provide insights.",
|
|
)
|
|
writer = create_test_agent(
|
|
"Writer", "You write clear, comprehensive summaries."
|
|
)
|
|
|
|
# Test SequentialWorkflow
|
|
sequential = SequentialWorkflow(
|
|
name="research-workflow",
|
|
agents=[researcher, analyst, writer],
|
|
max_loops=1,
|
|
)
|
|
|
|
seq_response = sequential.run(
|
|
"Research AI trends, analyze them, and write a summary."
|
|
)
|
|
|
|
# Test ConcurrentWorkflow
|
|
concurrent = ConcurrentWorkflow(
|
|
name="parallel-analysis",
|
|
agents=[researcher, analyst],
|
|
max_loops=1,
|
|
)
|
|
|
|
conc_response = concurrent.run(
|
|
"What are the benefits and challenges of AI?"
|
|
)
|
|
|
|
assert seq_response is not None and conc_response is not None
|
|
return {
|
|
"test_name": "test_complex_workflow_integration",
|
|
"status": "passed",
|
|
"response": "Complex workflow integration completed",
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"Complex workflow integration test failed: {e}")
|
|
return {
|
|
"test_name": "test_complex_workflow_integration",
|
|
"status": "failed",
|
|
"error": str(e),
|
|
}
|
|
|
|
|
|
# --- Test Orchestrator ---
|
|
|
|
|
|
def run_all_tests():
|
|
"""Run all tests and generate a comprehensive report"""
|
|
logger.info("Starting Enhanced Swarms Comprehensive Test Suite")
|
|
|
|
tests_to_run = [
|
|
# Basic Tests
|
|
test_basic_agent_functionality,
|
|
test_agent_with_custom_prompt,
|
|
test_tool_execution_with_agent,
|
|
# Multi-Modal Tests
|
|
test_multimodal_execution,
|
|
# Workflow Tests
|
|
test_sequential_workflow,
|
|
test_concurrent_workflow,
|
|
# Advanced Swarm Tests
|
|
test_agent_rearrange,
|
|
test_mixture_of_agents,
|
|
test_spreadsheet_swarm,
|
|
test_hierarchical_swarm,
|
|
test_majority_voting,
|
|
test_round_robin_swarm,
|
|
test_swarm_router,
|
|
# test_groupchat, ! there are still some issues in group chat
|
|
test_multi_agent_router,
|
|
# test_interactive_groupchat,
|
|
# test_forest_swarm,
|
|
# Performance & Features
|
|
test_streaming_mode,
|
|
test_agent_memory_persistence,
|
|
test_error_handling,
|
|
# Integration Tests
|
|
test_complex_workflow_integration,
|
|
]
|
|
|
|
results = []
|
|
for test_func in tests_to_run:
|
|
test_name = test_func.__name__
|
|
try:
|
|
logger.info(f"Running test: {test_name}...")
|
|
result = test_func()
|
|
results.append(result)
|
|
logger.info(f"Test {test_name} PASSED.")
|
|
except Exception as e:
|
|
logger.error(f"Test {test_name} FAILED: {e}")
|
|
error_details = {
|
|
"test_name": test_name,
|
|
"status": "failed",
|
|
"error": str(e),
|
|
"response": "Test execution failed",
|
|
}
|
|
results.append(error_details)
|
|
# create_github_issue(error_details) # Uncomment to enable GitHub issue creation
|
|
|
|
timestamp = generate_timestamp()
|
|
write_markdown_report(
|
|
results, f"comprehensive_test_report_{timestamp}"
|
|
)
|
|
|
|
# Summary
|
|
total_tests = len(results)
|
|
passed_tests = sum(1 for r in results if r["status"] == "passed")
|
|
failed_tests = total_tests - passed_tests
|
|
|
|
logger.info(
|
|
f"Test Summary: {passed_tests}/{total_tests} passed ({(passed_tests/total_tests)*100:.1f}%)"
|
|
)
|
|
|
|
if failed_tests > 0:
|
|
logger.error(
|
|
f"{failed_tests} tests failed. Check the report and logs."
|
|
)
|
|
exit(1)
|
|
else:
|
|
logger.success("All tests passed successfully!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if not API_KEY:
|
|
logger.error(
|
|
"OPENAI_API_KEY environment variable not set. Aborting tests."
|
|
)
|
|
exit(1)
|
|
else:
|
|
run_all_tests()
|