You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
223 lines
7.4 KiB
223 lines
7.4 KiB
import random
|
|
from swarms.structs.base_swarm import BaseSwarm
|
|
from typing import List
|
|
from swarms.structs.agent import Agent
|
|
from pydantic import BaseModel, Field
|
|
from typing import Optional
|
|
from datetime import datetime
|
|
from swarms.schemas.agent_step_schemas import ManySteps
|
|
import tenacity
|
|
from swarms.utils.loguru_logger import initialize_logger
|
|
|
|
logger = initialize_logger("round-robin")
|
|
|
|
datetime_stamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
class MetadataSchema(BaseModel):
|
|
swarm_id: Optional[str] = Field(
|
|
..., description="Unique ID for the run"
|
|
)
|
|
name: Optional[str] = Field(
|
|
"RoundRobinSwarm", description="Name of the swarm"
|
|
)
|
|
task: Optional[str] = Field(
|
|
..., description="Task or query given to all agents"
|
|
)
|
|
description: Optional[str] = Field(
|
|
"Concurrent execution of multiple agents",
|
|
description="Description of the workflow",
|
|
)
|
|
agent_outputs: Optional[List[ManySteps]] = Field(
|
|
..., description="List of agent outputs and metadata"
|
|
)
|
|
timestamp: Optional[str] = Field(
|
|
default_factory=datetime.now,
|
|
description="Timestamp of the workflow execution",
|
|
)
|
|
max_loops: Optional[int] = Field(
|
|
1, description="Maximum number of loops to run"
|
|
)
|
|
|
|
|
|
class RoundRobinSwarm(BaseSwarm):
|
|
"""
|
|
A swarm implementation that executes tasks in a round-robin fashion.
|
|
|
|
Args:
|
|
agents (List[Agent], optional): List of agents in the swarm. Defaults to None.
|
|
verbose (bool, optional): Flag to enable verbose mode. Defaults to False.
|
|
max_loops (int, optional): Maximum number of loops to run. Defaults to 1.
|
|
callback (callable, optional): Callback function to be called after each loop. Defaults to None.
|
|
return_json_on (bool, optional): Flag to return the metadata as a JSON object. Defaults to False.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Attributes:
|
|
agents (List[Agent]): List of agents in the swarm.
|
|
verbose (bool): Flag to enable verbose mode.
|
|
max_loops (int): Maximum number of loops to run.
|
|
index (int): Current index of the agent being executed.
|
|
|
|
Methods:
|
|
run(task: str, *args, **kwargs) -> Any: Executes the given task on the agents in a round-robin fashion.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name: str = "RoundRobinSwarm",
|
|
description: str = "A swarm implementation that executes tasks in a round-robin fashion.",
|
|
agents: List[Agent] = None,
|
|
verbose: bool = False,
|
|
max_loops: int = 1,
|
|
callback: callable = None,
|
|
return_json_on: bool = False,
|
|
max_retries: int = 3,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
try:
|
|
super().__init__(
|
|
name=name,
|
|
description=description,
|
|
agents=agents,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
self.name = name
|
|
self.description = description
|
|
self.agents = agents or []
|
|
self.verbose = verbose
|
|
self.max_loops = max_loops
|
|
self.callback = callback
|
|
self.return_json_on = return_json_on
|
|
self.index = 0
|
|
self.max_retries = max_retries
|
|
|
|
# Store the metadata for the run
|
|
self.output_schema = MetadataSchema(
|
|
name=self.name,
|
|
swarm_id=datetime_stamp,
|
|
task="",
|
|
description=self.description,
|
|
agent_outputs=[],
|
|
timestamp=datetime_stamp,
|
|
max_loops=self.max_loops,
|
|
)
|
|
|
|
# Set the max loops for every agent
|
|
if self.agents:
|
|
for agent in self.agents:
|
|
agent.max_loops = random.randint(1, 5)
|
|
|
|
logger.info(
|
|
f"Successfully initialized {self.name} with {len(self.agents)} agents"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to initialize {self.name}: {str(e)}"
|
|
)
|
|
raise
|
|
|
|
@tenacity.retry(
|
|
stop=tenacity.stop_after_attempt(3),
|
|
wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=tenacity.retry_if_exception_type(Exception),
|
|
before_sleep=lambda retry_state: logger.info(
|
|
f"Retrying in {retry_state.next_action.sleep} seconds..."
|
|
),
|
|
)
|
|
def _execute_agent(
|
|
self, agent: Agent, task: str, *args, **kwargs
|
|
) -> str:
|
|
"""Execute a single agent with retries and error handling"""
|
|
try:
|
|
logger.info(
|
|
f"Running Agent {agent.agent_name} on task: {task}"
|
|
)
|
|
result = agent.run(task, *args, **kwargs)
|
|
self.output_schema.agent_outputs.append(
|
|
agent.agent_output
|
|
)
|
|
return result
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error executing agent {agent.agent_name}: {str(e)}"
|
|
)
|
|
raise
|
|
|
|
def run(self, task: str, *args, **kwargs):
|
|
"""
|
|
Executes the given task on the agents in a round-robin fashion.
|
|
|
|
Args:
|
|
task (str): The task to be executed.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
Any: The result of the task execution.
|
|
|
|
Raises:
|
|
ValueError: If no agents are configured
|
|
Exception: If an exception occurs during task execution.
|
|
"""
|
|
if not self.agents:
|
|
logger.error("No agents configured for the swarm")
|
|
raise ValueError("No agents configured for the swarm")
|
|
|
|
try:
|
|
result = task
|
|
self.output_schema.task = task
|
|
n = len(self.agents)
|
|
logger.info(
|
|
f"Starting round-robin execution with task '{task}' on {n} agents"
|
|
)
|
|
|
|
for loop in range(self.max_loops):
|
|
logger.debug(
|
|
f"Starting loop {loop + 1}/{self.max_loops}"
|
|
)
|
|
|
|
for _ in range(n):
|
|
current_agent = self.agents[self.index]
|
|
try:
|
|
result = self._execute_agent(
|
|
current_agent, result, *args, **kwargs
|
|
)
|
|
finally:
|
|
self.index = (self.index + 1) % n
|
|
|
|
if self.callback:
|
|
logger.debug(
|
|
f"Executing callback for loop {loop + 1}"
|
|
)
|
|
try:
|
|
self.callback(loop, result)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Callback execution failed: {str(e)}"
|
|
)
|
|
|
|
logger.success(
|
|
f"Successfully completed {self.max_loops} loops of round-robin execution"
|
|
)
|
|
|
|
if self.return_json_on:
|
|
return self.export_metadata()
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"Round-robin execution failed: {str(e)}")
|
|
raise
|
|
|
|
def export_metadata(self):
|
|
"""Export the execution metadata as JSON"""
|
|
try:
|
|
return self.output_schema.model_dump_json(indent=4)
|
|
except Exception as e:
|
|
logger.error(f"Failed to export metadata: {str(e)}")
|
|
raise
|