You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
5.4 KiB
184 lines
5.4 KiB
import torch
|
|
from transformers import AutoProcessor, IdeficsForVisionText2Text
|
|
from termcolor import colored
|
|
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
|
from typing import Optional, Callable
|
|
|
|
|
|
def autodetect_device():
|
|
"""
|
|
Autodetects the device to use for inference.
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
The device to use for inference.
|
|
"""
|
|
return "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
class Idefics(BaseMultiModalModel):
|
|
"""
|
|
|
|
A class for multimodal inference using pre-trained models from the Hugging Face Hub.
|
|
|
|
Attributes
|
|
----------
|
|
device : str
|
|
The device to use for inference.
|
|
model_name : str, optional
|
|
The name of the pre-trained model model_name (default is "HuggingFaceM4/idefics-9b-instruct").
|
|
processor : transformers.PreTrainedProcessor
|
|
The pre-trained processor.
|
|
max_length : int
|
|
The maximum length of the generated text.
|
|
chat_history : list
|
|
The chat history.
|
|
|
|
Methods
|
|
-------
|
|
infer(prompts, batched_mode=True)
|
|
Generates text based on the provided prompts.
|
|
chat(user_input)
|
|
Engages in a continuous bidirectional conversation based on the user input.
|
|
set_model_name(model_name)
|
|
Changes the model model_name.
|
|
set_device(device)
|
|
Changes the device used for inference.
|
|
set_max_length(max_length)
|
|
Changes the maximum length of the generated text.
|
|
clear_chat_history()
|
|
Clears the chat history.
|
|
|
|
|
|
# Usage
|
|
```
|
|
from swarms.models import idefics
|
|
|
|
model = idefics()
|
|
|
|
user_input = "User: What is in this image? https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG"
|
|
response = model.chat(user_input)
|
|
print(response)
|
|
|
|
user_input = "User: And who is that? https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052"
|
|
response = model.chat(user_input)
|
|
print(response)
|
|
|
|
model.set_model_name("new_model_name")
|
|
model.set_device("cpu")
|
|
model.set_max_length(200)
|
|
model.clear_chat_history()
|
|
```
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_name: Optional[
|
|
str
|
|
] = "HuggingFaceM4/idefics-9b-instruct",
|
|
device: Callable = autodetect_device,
|
|
torch_dtype = torch.bfloat16,
|
|
max_length: int = 100,
|
|
batched_mode: bool = True,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
# Initialize the parent class
|
|
super().__init__(*args, **kwargs)
|
|
self.model_name = model_name
|
|
self.device = device
|
|
self.max_length = max_length
|
|
self.batched_mode = batched_mode
|
|
|
|
self.chat_history = []
|
|
self.device = (
|
|
device
|
|
if device
|
|
else ("cuda" if torch.cuda.is_available() else "cpu")
|
|
)
|
|
self.model = IdeficsForVisionText2Text.from_pretrained(
|
|
model_name, torch_dtype=torch_dtype, *args, **kwargs
|
|
).to(self.device)
|
|
|
|
self.processor = AutoProcessor.from_pretrained(model_name)
|
|
|
|
def run(self, task: str, *args, **kwargs) -> str:
|
|
"""
|
|
Generates text based on the provided prompts.
|
|
|
|
Parameters
|
|
----------
|
|
task : str
|
|
the task to perform
|
|
batched_mode : bool, optional
|
|
Whether to process the prompts in batched mode. If True, all prompts are
|
|
processed together. If False, only the first prompt is processed (default is True).
|
|
|
|
Returns
|
|
-------
|
|
list
|
|
A list of generated text strings.
|
|
"""
|
|
try:
|
|
inputs = (
|
|
self.processor(
|
|
task,
|
|
add_end_of_utterance_token=False,
|
|
return_tensors="pt",
|
|
*args,
|
|
**kwargs,
|
|
).to(self.device)
|
|
if self.batched_mode
|
|
else self.processor(task, return_tensors="pt").to(
|
|
self.device
|
|
)
|
|
)
|
|
|
|
exit_condition = self.processor.tokenizer(
|
|
"<end_of_utterance>", add_special_tokens=False
|
|
).input_ids
|
|
|
|
bad_words_ids = self.processor.tokenizer(
|
|
["<image>", "<fake_token_around_image"],
|
|
add_special_tokens=False,
|
|
).input_ids
|
|
|
|
generated_ids = self.model.generate(
|
|
**inputs,
|
|
eos_token_id=exit_condition,
|
|
bad_words_ids=bad_words_ids,
|
|
max_length=self.max_length,
|
|
)
|
|
generated_text = self.processor.batch_decode(
|
|
generated_ids, skip_special_tokens=True
|
|
)
|
|
return generated_text
|
|
|
|
except Exception as error:
|
|
print(
|
|
colored(
|
|
(
|
|
"Error in"
|
|
f" {self.__class__.__name__} pipeline:"
|
|
f" {error}"
|
|
),
|
|
"red",
|
|
)
|
|
)
|
|
|
|
def set_model_name(self, model_name):
|
|
"""
|
|
Changes the model model_name.
|
|
|
|
Parameters
|
|
----------
|
|
model_name : str
|
|
The name of the new pre-trained model model_name.
|
|
"""
|
|
self.model = IdeficsForVisionText2Text.from_pretrained(
|
|
model_name, torch_dtype=torch.bfloat16
|
|
).to(self.device)
|
|
self.processor = AutoProcessor.from_pretrained(model_name)
|