You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/models/idefics.py

184 lines
5.4 KiB

import torch
from transformers import AutoProcessor, IdeficsForVisionText2Text
from termcolor import colored
from swarms.models.base_multimodal_model import BaseMultiModalModel
from typing import Optional, Callable
def autodetect_device():
"""
Autodetects the device to use for inference.
Returns
-------
str
The device to use for inference.
"""
return "cuda" if torch.cuda.is_available() else "cpu"
class Idefics(BaseMultiModalModel):
"""
A class for multimodal inference using pre-trained models from the Hugging Face Hub.
Attributes
----------
device : str
The device to use for inference.
model_name : str, optional
The name of the pre-trained model model_name (default is "HuggingFaceM4/idefics-9b-instruct").
processor : transformers.PreTrainedProcessor
The pre-trained processor.
max_length : int
The maximum length of the generated text.
chat_history : list
The chat history.
Methods
-------
infer(prompts, batched_mode=True)
Generates text based on the provided prompts.
chat(user_input)
Engages in a continuous bidirectional conversation based on the user input.
set_model_name(model_name)
Changes the model model_name.
set_device(device)
Changes the device used for inference.
set_max_length(max_length)
Changes the maximum length of the generated text.
clear_chat_history()
Clears the chat history.
# Usage
```
from swarms.models import idefics
model = idefics()
user_input = "User: What is in this image? https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG"
response = model.chat(user_input)
print(response)
user_input = "User: And who is that? https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052"
response = model.chat(user_input)
print(response)
model.set_model_name("new_model_name")
model.set_device("cpu")
model.set_max_length(200)
model.clear_chat_history()
```
"""
def __init__(
self,
model_name: Optional[
str
] = "HuggingFaceM4/idefics-9b-instruct",
device: Callable = autodetect_device,
torch_dtype = torch.bfloat16,
max_length: int = 100,
batched_mode: bool = True,
*args,
**kwargs,
):
# Initialize the parent class
super().__init__(*args, **kwargs)
self.model_name = model_name
self.device = device
self.max_length = max_length
self.batched_mode = batched_mode
self.chat_history = []
self.device = (
device
if device
else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model = IdeficsForVisionText2Text.from_pretrained(
model_name, torch_dtype=torch_dtype, *args, **kwargs
).to(self.device)
self.processor = AutoProcessor.from_pretrained(model_name)
def run(self, task: str, *args, **kwargs) -> str:
"""
Generates text based on the provided prompts.
Parameters
----------
task : str
the task to perform
batched_mode : bool, optional
Whether to process the prompts in batched mode. If True, all prompts are
processed together. If False, only the first prompt is processed (default is True).
Returns
-------
list
A list of generated text strings.
"""
try:
inputs = (
self.processor(
task,
add_end_of_utterance_token=False,
return_tensors="pt",
*args,
**kwargs,
).to(self.device)
if self.batched_mode
else self.processor(task, return_tensors="pt").to(
self.device
)
)
exit_condition = self.processor.tokenizer(
"<end_of_utterance>", add_special_tokens=False
).input_ids
bad_words_ids = self.processor.tokenizer(
["<image>", "<fake_token_around_image"],
add_special_tokens=False,
).input_ids
generated_ids = self.model.generate(
**inputs,
eos_token_id=exit_condition,
bad_words_ids=bad_words_ids,
max_length=self.max_length,
)
generated_text = self.processor.batch_decode(
generated_ids, skip_special_tokens=True
)
return generated_text
except Exception as error:
print(
colored(
(
"Error in"
f" {self.__class__.__name__} pipeline:"
f" {error}"
),
"red",
)
)
def set_model_name(self, model_name):
"""
Changes the model model_name.
Parameters
----------
model_name : str
The name of the new pre-trained model model_name.
"""
self.model = IdeficsForVisionText2Text.from_pretrained(
model_name, torch_dtype=torch.bfloat16
).to(self.device)
self.processor = AutoProcessor.from_pretrained(model_name)