You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/models/timm_model.py

177 lines
5.2 KiB

from unittest.mock import Mock
import torch
import pytest
from swarms.models.timm import TimmModel, TimmModelInfo
@pytest.fixture
def sample_model_info():
return TimmModelInfo(model_name="resnet18", pretrained=True, in_chans=3)
def test_get_supported_models():
model_handler = TimmModel()
supported_models = model_handler._get_supported_models()
assert isinstance(supported_models, list)
assert len(supported_models) > 0
def test_create_model(sample_model_info):
model_handler = TimmModel()
model = model_handler._create_model(sample_model_info)
assert isinstance(model, torch.nn.Module)
def test_call(sample_model_info):
model_handler = TimmModel()
input_tensor = torch.randn(1, 3, 224, 224)
output_shape = model_handler.__call__(sample_model_info, input_tensor)
assert isinstance(output_shape, torch.Size)
@pytest.mark.parametrize(
"model_name, pretrained, in_chans",
[
("resnet18", True, 3),
("resnet50", False, 1),
("efficientnet_b0", True, 3),
],
)
def test_create_model_parameterized(model_name, pretrained, in_chans):
model_info = TimmModelInfo(
model_name=model_name, pretrained=pretrained, in_chans=in_chans
)
model_handler = TimmModel()
model = model_handler._create_model(model_info)
assert isinstance(model, torch.nn.Module)
@pytest.mark.parametrize(
"model_name, pretrained, in_chans",
[
("resnet18", True, 3),
("resnet50", False, 1),
("efficientnet_b0", True, 3),
],
)
def test_call_parameterized(model_name, pretrained, in_chans):
model_info = TimmModelInfo(
model_name=model_name, pretrained=pretrained, in_chans=in_chans
)
model_handler = TimmModel()
input_tensor = torch.randn(1, in_chans, 224, 224)
output_shape = model_handler.__call__(model_info, input_tensor)
assert isinstance(output_shape, torch.Size)
def test_get_supported_models_mock():
model_handler = TimmModel()
model_handler._get_supported_models = Mock(
return_value=["resnet18", "resnet50"]
)
supported_models = model_handler._get_supported_models()
assert supported_models == ["resnet18", "resnet50"]
def test_create_model_mock(sample_model_info):
model_handler = TimmModel()
model_handler._create_model = Mock(return_value=torch.nn.Module())
model = model_handler._create_model(sample_model_info)
assert isinstance(model, torch.nn.Module)
def test_call_exception():
model_handler = TimmModel()
model_info = TimmModelInfo(
model_name="invalid_model", pretrained=True, in_chans=3
)
input_tensor = torch.randn(1, 3, 224, 224)
with pytest.raises(Exception):
model_handler.__call__(model_info, input_tensor)
def test_coverage():
pytest.main(["--cov=my_module", "--cov-report=html"])
def test_environment_variable():
import os
os.environ["MODEL_NAME"] = "resnet18"
os.environ["PRETRAINED"] = "True"
os.environ["IN_CHANS"] = "3"
model_handler = TimmModel()
model_info = TimmModelInfo(
model_name=os.environ["MODEL_NAME"],
pretrained=bool(os.environ["PRETRAINED"]),
in_chans=int(os.environ["IN_CHANS"]),
)
input_tensor = torch.randn(1, model_info.in_chans, 224, 224)
output_shape = model_handler(model_info, input_tensor)
assert isinstance(output_shape, torch.Size)
@pytest.mark.slow
def test_marked_slow():
model_handler = TimmModel()
model_info = TimmModelInfo(
model_name="resnet18", pretrained=True, in_chans=3
)
input_tensor = torch.randn(1, 3, 224, 224)
output_shape = model_handler(model_info, input_tensor)
assert isinstance(output_shape, torch.Size)
@pytest.mark.parametrize(
"model_name, pretrained, in_chans",
[
("resnet18", True, 3),
("resnet50", False, 1),
("efficientnet_b0", True, 3),
],
)
def test_marked_parameterized(model_name, pretrained, in_chans):
model_info = TimmModelInfo(
model_name=model_name, pretrained=pretrained, in_chans=in_chans
)
model_handler = TimmModel()
model = model_handler._create_model(model_info)
assert isinstance(model, torch.nn.Module)
def test_exception_testing():
model_handler = TimmModel()
model_info = TimmModelInfo(
model_name="invalid_model", pretrained=True, in_chans=3
)
input_tensor = torch.randn(1, 3, 224, 224)
with pytest.raises(Exception):
model_handler.__call__(model_info, input_tensor)
def test_parameterized_testing():
model_handler = TimmModel()
model_info = TimmModelInfo(
model_name="resnet18", pretrained=True, in_chans=3
)
input_tensor = torch.randn(1, 3, 224, 224)
output_shape = model_handler.__call__(model_info, input_tensor)
assert isinstance(output_shape, torch.Size)
def test_use_mocks_and_monkeypatching():
model_handler = TimmModel()
model_handler._create_model = Mock(return_value=torch.nn.Module())
model_info = TimmModelInfo(
model_name="resnet18", pretrained=True, in_chans=3
)
model = model_handler._create_model(model_info)
assert isinstance(model, torch.nn.Module)
def test_coverage_report():
# Install pytest-cov
# Run tests with coverage report
pytest.main(["--cov=my_module", "--cov-report=html"])