Orchestrate Swarms of Agents From Any Framework Like OpenAI, Langchain, and Etc for Real World Workflow Automation. Join our Community: https://discord.gg/DbjBMJTSWD
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Go to file
evelynmitchell 3e29a067df
Merge pull request #1 from kyegomez/master
1 year ago
.github Removed conda ghaction 1 year ago
docs [GEMINI][FEAT][TESTS][DOCS] 1 year ago
images openai + no swarms demo mp4 1 year ago
playground [REACT Prompt] [FEAT][BaseStructure Tests] [MM-VCOT Agent] 1 year ago
scripts [TESTS][Fixed test names to contain test_ for pytest][FEAT][scripts folder] 1 year ago
swarms [GEMINI][FEAT][TESTS][DOCS] 1 year ago
tests [GEMINI][FEAT][TESTS][DOCS] 1 year ago
.env.example [FIX][Zephyr] 1 year ago
.gitignore [CLEANUP CHORES] 1 year ago
.pre-commit-config.yaml requirements.txt clean up 1 year ago
.readthedocs.yml Update .readthedocs.yml 1 year ago
CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md 1 year ago
CONTRIBUTING.md pytest clednup 1 year ago
LICENSE [README] 1 year ago
README.md [V] [README] 1 year ago
SECURITY.md security md 1 year ago
example.py [DEPENDENCY CHECK] 1 year ago
mkdocs.yml [OpenAITTS][DOCS] 1 year ago
multi_modal_auto_agent.py [AbstractLLM] 1 year ago
pyproject.toml [GEMINI][FEAT][TESTS][DOCS] 1 year ago
requirements.txt [DEPENDENCY CHECK] 1 year ago
sequential_workflow_example.py [PYPROJECT TOML] [FIXES] 1 year ago

README.md

Swarming banner icon

Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.

GitHub issues GitHub forks GitHub stars GitHub licenseGitHub star chartDependency Status Downloads

Join the Agora discordShare on Twitter Share on Facebook Share on LinkedIn

Share on Reddit Share on Hacker News Share on Pinterest Share on WhatsApp


Installation

pip3 install --upgrade swarms


Usage

Run example in Collab: Open In Colab

Agent Example

  • Reliable Structure that provides LLMS autonomy
  • Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more
  • Enterprise Grade + Production Grade: Agent is designed and optimized for automating real-world tasks at scale!
import os

from dotenv import load_dotenv

# Import the OpenAIChat model and the Agent struct
from swarms.models import OpenAIChat
from swarms.structs import Agent

# Load the environment variables
load_dotenv()

# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")

# Initialize the language model
llm = OpenAIChat(
    temperature=0.5,
    model_name="gpt-4",
    openai_api_key=api_key,
    max_tokens=4000
)


## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)

# Run the workflow on a task
out = agent.run("Generate a 10,000 word blog on health and wellness.")
print(out)



SequentialWorkflow

  • A Sequential swarm of autonomous agents where each agent's outputs are fed into the next agent
  • Save and Restore Workflow states!
  • Integrate Agent's with various LLMs and Multi-Modality Models
import os 
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow
from dotenv import load_dotenv

load_dotenv()

# Load the environment variables
api_key = os.getenv("OPENAI_API_KEY")


# Initialize the language agent
llm = OpenAIChat(
    temperature=0.5,
    model_name="gpt-4",
    openai_api_key=api_key,
    max_tokens=4000
)


# Initialize the agent with the language agent
agent1 = Agent(llm=llm, max_loops=1)

# Create another agent for a different task
agent2 = Agent(llm=llm, max_loops=1)

# Create another agent for a different task
agent3 = Agent(llm=llm, max_loops=1)

# Create the workflow
workflow = SequentialWorkflow(max_loops=1)

# Add tasks to the workflow
workflow.add(
    agent1, "Generate a 10,000 word blog on health and wellness.", 
)

# Suppose the next task takes the output of the first task as input
workflow.add(
    agent2, "Summarize the generated blog",
)

# Run the workflow
workflow.run()

# Output the results
for task in workflow.tasks:
    print(f"Task: {task.description}, Result: {task.result}")


Multi Modal Autonomous Agents

  • Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent

# Load the environment variables
load_dotenv()

# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")

# Initialize the language model
llm = GPT4VisionAPI(
    openai_api_key=api_key,
    max_tokens=500,
)

# Initialize the task
task = (
    "Analyze this image of an assembly line and identify any issues such as"
    " misaligned parts, defects, or deviations from the standard assembly"
    " process. IF there is anything unsafe in the image, explain why it is"
    " unsafe and how it could be improved."
)
img = "assembly_line.jpg"

## Initialize the workflow
agent = Agent(
    llm=llm,
    max_loops="auto",
    autosave=True,
    dashboard=True,
    multi_modal=True
)

# Run the workflow on a task
out = agent.run(task=task, img=img)
print(out)


OmniModalAgent

  • An agent that can understand any modality and conditionally generate any modality.
from swarms.agents.omni_modal_agent import OmniModalAgent, OpenAIChat
from swarms.models import OpenAIChat
from dotenv import load_dotenv
import os

# Load the environment variables
load_dotenv()

# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")

# Initialize the language model
llm = OpenAIChat(
    temperature=0.5,
    model_name="gpt-4",
    openai_api_key=api_key,
)


agent = OmniModalAgent(llm)
response = agent.run("Generate a video of a swarm of fish and then make an image out of the video")
print(response)

Multi-Agent Swarm for Logistics

  • Swarms is a framework designed for real-world deployment here is a demo presenting a fully ready to use Swarm for a vast array of logistics tasks.
  • Swarms is designed to be modular and reliable for real-world deployments.
  • Swarms is the first framework that unleases multi-modal autonomous agents in the real world.
from swarms.structs import Agent
import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI
from swarms.prompts.logistics import (
    Health_Security_Agent_Prompt,
    Quality_Control_Agent_Prompt,
    Productivity_Agent_Prompt,
    Safety_Agent_Prompt,
    Security_Agent_Prompt,
    Sustainability_Agent_Prompt,
    Efficiency_Agent_Prompt,
)

# Load ENV
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")

# GPT4VisionAPI 
llm = GPT4VisionAPI(openai_api_key=api_key)

# Image for analysis
factory_image = "factory_image1.jpg"

# Initialize agents with respective prompts
health_security_agent = Agent(
    llm=llm,
    sop=Health_Security_Agent_Prompt,
    max_loops=1,
    multi_modal=True,
)

# Quality control agent
quality_control_agent = Agent(
    llm=llm,
    sop=Quality_Control_Agent_Prompt,
    max_loops=1,
    multi_modal=True,
)


# Productivity Agent
productivity_agent = Agent(
    llm=llm,
    sop=Productivity_Agent_Prompt,
    max_loops=1,
    multi_modal=True,
)

# Initiailize safety agent
safety_agent = Agent(
    llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True
)

# Init the security agent
security_agent = Agent(
    llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True
)


# Initialize sustainability agent
sustainability_agent = Agent(
    llm=llm,
    sop=Sustainability_Agent_Prompt,
    max_loops=1,
    multi_modal=True,
)


# Initialize efficincy agent
efficiency_agent = Agent(
    llm=llm,
    sop=Efficiency_Agent_Prompt,
    max_loops=1,
    multi_modal=True,
)

# Run agents with respective tasks on the same image
health_analysis = health_security_agent.run(
    "Analyze the safety of this factory", factory_image
)
quality_analysis = quality_control_agent.run(
    "Examine product quality in the factory", factory_image
)
productivity_analysis = productivity_agent.run(
    "Evaluate factory productivity", factory_image
)
safety_analysis = safety_agent.run(
    "Inspect the factory's adherence to safety standards",
    factory_image,
)
security_analysis = security_agent.run(
    "Assess the factory's security measures and systems",
    factory_image,
)
sustainability_analysis = sustainability_agent.run(
    "Examine the factory's sustainability practices", factory_image
)
efficiency_analysis = efficiency_agent.run(
    "Analyze the efficiency of the factory's manufacturing process",
    factory_image,
)

Features 🤖

The Swarms framework is designed with a strong emphasis on reliability, performance, and production-grade readiness. Below are the key features that make Swarms an ideal choice for enterprise-level AI deployments.

🚀 Production-Grade Readiness

  • Scalable Architecture: Built to scale effortlessly with your growing business needs.
  • Enterprise-Level Security: Incorporates top-notch security features to safeguard your data and operations.
  • Containerization and Microservices: Easily deployable in containerized environments, supporting microservices architecture.

⚙️ Reliability and Robustness

  • Fault Tolerance: Designed to handle failures gracefully, ensuring uninterrupted operations.
  • Consistent Performance: Maintains high performance even under heavy loads or complex computational demands.
  • Automated Backup and Recovery: Features automatic backup and recovery processes, reducing the risk of data loss.

💡 Advanced AI Capabilities

The Swarms framework is equipped with a suite of advanced AI capabilities designed to cater to a wide range of applications and scenarios, ensuring versatility and cutting-edge performance.

Multi-Modal Autonomous Agents

  • Versatile Model Support: Seamlessly works with various AI models, including NLP, computer vision, and more, for comprehensive multi-modal capabilities.
  • Context-Aware Processing: Employs context-aware processing techniques to ensure relevant and accurate responses from agents.

Function Calling Models for API Execution

  • Automated API Interactions: Function calling models that can autonomously execute API calls, enabling seamless integration with external services and data sources.
  • Dynamic Response Handling: Capable of processing and adapting to responses from APIs for real-time decision making.

Varied Architectures of Swarms

  • Flexible Configuration: Supports multiple swarm architectures, from centralized to decentralized, for diverse application needs.
  • Customizable Agent Roles: Allows customization of agent roles and behaviors within the swarm to optimize performance and efficiency.

Generative Models

  • Advanced Generative Capabilities: Incorporates state-of-the-art generative models to create content, simulate scenarios, or predict outcomes.
  • Creative Problem Solving: Utilizes generative AI for innovative problem-solving approaches and idea generation.

Enhanced Decision-Making

  • AI-Powered Decision Algorithms: Employs advanced algorithms for swift and effective decision-making in complex scenarios.
  • Risk Assessment and Management: Capable of assessing risks and managing uncertain situations with AI-driven insights.

Real-Time Adaptation and Learning

  • Continuous Learning: Agents can continuously learn and adapt from new data, improving their performance and accuracy over time.
  • Environment Adaptability: Designed to adapt to different operational environments, enhancing robustness and reliability.

🔄 Efficient Workflow Automation

  • Streamlined Task Management: Simplifies complex tasks with automated workflows, reducing manual intervention.
  • Customizable Workflows: Offers customizable workflow options to fit specific business needs and requirements.
  • Real-Time Analytics and Reporting: Provides real-time insights into agent performance and system health.

🌐 Wide-Ranging Integration

  • API-First Design: Easily integrates with existing systems and third-party applications via robust APIs.
  • Cloud Compatibility: Fully compatible with major cloud platforms for flexible deployment options.
  • Continuous Integration/Continuous Deployment (CI/CD): Supports CI/CD practices for seamless updates and deployment.

📊 Performance Optimization

  • Resource Management: Efficiently manages computational resources for optimal performance.
  • Load Balancing: Automatically balances workloads to maintain system stability and responsiveness.
  • Performance Monitoring Tools: Includes comprehensive monitoring tools for tracking and optimizing performance.

🛡️ Security and Compliance

  • Data Encryption: Implements end-to-end encryption for data at rest and in transit.
  • Compliance Standards Adherence: Adheres to major compliance standards ensuring legal and ethical usage.
  • Regular Security Updates: Regular updates to address emerging security threats and vulnerabilities.

💬 Community and Support

  • Extensive Documentation: Detailed documentation for easy implementation and troubleshooting.
  • Active Developer Community: A vibrant community for sharing ideas, solutions, and best practices.
  • Professional Support: Access to professional support for enterprise-level assistance and guidance.

Swarms framework is not just a tool but a robust, scalable, and secure partner in your AI journey, ready to tackle the challenges of modern AI applications in a business environment.

Documentation

🫶 Contributions:

Swarms is an open-source project, and contributions are welcome. If you want to contribute, you can create new features, fix bugs, or improve the infrastructure. Please refer to the CONTRIBUTING.md and our contributing board file in the repository for more information on how to contribute.

To see how to contribute, visit Contribution guidelines

Community

Discovery Call

Book a discovery call with the Swarms team to learn how to optimize and scale your swarm! Click here to book a time that works for you!

License

Apache License