You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
495 lines
21 KiB
495 lines
21 KiB
import boto3
|
|
from transformers import AutoTokenizer
|
|
from botocore.exceptions import NoCredentialsError
|
|
import tokenize
|
|
import requests
|
|
import os
|
|
import time
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from threading import Lock
|
|
import warnings
|
|
import json
|
|
|
|
from swarms.modelui.modules.block_requests import OpenMonkeyPatch, RequestBlocker
|
|
from swarms.modelui.modules.logging_colors import logger
|
|
from swarms.modelui.server import create_interface
|
|
|
|
from vllm import LLM
|
|
|
|
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
|
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='Using the update method is deprecated')
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='Field "model_name" has conflict')
|
|
|
|
with RequestBlocker():
|
|
import gradio as gr
|
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('Agg') # This fixes LaTeX rendering on some systems
|
|
|
|
import swarms.modelui.modules.extensions as extensions_module
|
|
from swarms.modelui.modules import (
|
|
chat,
|
|
shared,
|
|
training,
|
|
ui,
|
|
ui_chat,
|
|
ui_default,
|
|
ui_file_saving,
|
|
ui_model_menu,
|
|
ui_notebook,
|
|
ui_parameters,
|
|
ui_session,
|
|
utils
|
|
)
|
|
from swarms.modelui.modules.extensions import apply_extensions
|
|
from swarms.modelui.modules.LoRA import add_lora_to_model
|
|
from swarms.modelui.modules.models import load_model
|
|
from swarms.modelui.modules.models_settings import (
|
|
get_fallback_settings,
|
|
get_model_metadata,
|
|
update_model_parameters
|
|
)
|
|
from swarms.modelui.modules.utils import gradio
|
|
|
|
import gradio as gr
|
|
from swarms.tools.tools_controller import MTQuestionAnswerer, load_valid_tools
|
|
from swarms.tools.singletool import STQuestionAnswerer
|
|
from langchain.schema import AgentFinish
|
|
import requests
|
|
|
|
from swarms.modelui.server import create_interface
|
|
from tool_server import run_tool_server
|
|
from threading import Thread
|
|
from multiprocessing import Process
|
|
import time
|
|
from langchain.llms import VLLM
|
|
|
|
import yaml
|
|
|
|
|
|
tool_server_flag = False
|
|
def start_tool_server():
|
|
# server = Thread(target=run_tool_server)
|
|
server = Process(target=run_tool_server)
|
|
server.start()
|
|
global tool_server_flag
|
|
tool_server_flag = True
|
|
|
|
|
|
DEFAULTMODEL = "ChatGPT" # "GPT-3.5"
|
|
|
|
# Read the model/ directory and get the list of models
|
|
model_dir = Path("./models/")
|
|
available_models = ["ChatGPT", "GPT-3.5", "decapoda-research/llama-13b-hf"] + [f.name for f in model_dir.iterdir() if f.is_dir()]
|
|
|
|
tools_mappings = {
|
|
"klarna": "https://www.klarna.com/",
|
|
"weather": "http://127.0.0.1:8079/tools/weather/",
|
|
# "database": "http://127.0.0.1:8079/tools/database/",
|
|
# "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
|
|
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
|
|
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
|
|
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
|
|
# "wikidata": "http://127.0.0.1:8079/tools/kg/wikidata/",
|
|
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
|
|
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
|
|
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
|
|
"stock": "http://127.0.0.1:8079/tools/stock/",
|
|
"bing_map": "http://127.0.0.1:8079/tools/map.bing_map/",
|
|
# "baidu_map": "http://127.0.0.1:8079/tools/map/baidu_map/",
|
|
"zillow": "http://127.0.0.1:8079/tools/zillow/",
|
|
"airbnb": "http://127.0.0.1:8079/tools/airbnb/",
|
|
"job_search": "http://127.0.0.1:8079/tools/job_search/",
|
|
# "baidu-translation": "http://127.0.0.1:8079/tools/translation/baidu-translation/",
|
|
# "nllb-translation": "http://127.0.0.1:8079/tools/translation/nllb-translation/",
|
|
"tutorial": "http://127.0.0.1:8079/tools/tutorial/",
|
|
"file_operation": "http://127.0.0.1:8079/tools/file_operation/",
|
|
"meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
|
|
"code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
|
|
"arxiv": "http://127.0.0.1:8079/tools/arxiv/",
|
|
"google_places": "http://127.0.0.1:8079/tools/google_places/",
|
|
"google_serper": "http://127.0.0.1:8079/tools/google_serper/",
|
|
"google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
|
|
"python": "http://127.0.0.1:8079/tools/python/",
|
|
"sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
|
|
"shell": "http://127.0.0.1:8079/tools/shell/",
|
|
"image_generation": "http://127.0.0.1:8079/tools/image_generation/",
|
|
"hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
|
|
"gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
|
|
"travel": "http://127.0.0.1:8079/tools/travel",
|
|
"walmart": "http://127.0.0.1:8079/tools/walmart",
|
|
}
|
|
|
|
# data = json.load(open('swarms/tools/openai.json')) # Load the JSON file
|
|
# items = data['items'] # Get the list of items
|
|
|
|
# for plugin in items: # Iterate over items, not data
|
|
# url = plugin['manifest']['api']['url']
|
|
# tool_name = plugin['namespace']
|
|
# tools_mappings[tool_name] = url[:-len('/.well-known/openai.yaml')]
|
|
|
|
# print(tools_mappings)
|
|
|
|
valid_tools_info = []
|
|
all_tools_list = []
|
|
|
|
gr.close_all()
|
|
|
|
MAX_TURNS = 30
|
|
MAX_BOXES = MAX_TURNS * 2
|
|
|
|
return_msg = []
|
|
chat_history = ""
|
|
|
|
MAX_SLEEP_TIME = 40
|
|
|
|
def download_model(model_url: str, memory_utilization: int , model_dir: str):
|
|
model_name = model_url.split('/')[-1]
|
|
# Download the model using VLLM
|
|
vllm_model = VLLM(
|
|
model=model_url,
|
|
trust_remote_code=True,
|
|
gpu_memory_utilization=memory_utilization,
|
|
download_dir=model_dir
|
|
)
|
|
# Add the downloaded model to the available_models list
|
|
available_models.append((model_name, vllm_model))
|
|
# Update the dropdown choices with the new available_models list
|
|
model_chosen.update(choices=available_models)
|
|
|
|
valid_tools_info = {}
|
|
|
|
import gradio as gr
|
|
from swarms.tools.tools_controller import load_valid_tools, tools_mappings
|
|
|
|
def load_tools():
|
|
global valid_tools_info
|
|
global all_tools_list
|
|
try:
|
|
valid_tools_info = load_valid_tools(tools_mappings)
|
|
print(f"valid_tools_info: {valid_tools_info}") # Debugging line
|
|
except BaseException as e:
|
|
print(repr(e))
|
|
all_tools_list = sorted(list(valid_tools_info.keys()))
|
|
print(f"all_tools_list: {all_tools_list}") # Debugging line
|
|
return gr.update(choices=all_tools_list)
|
|
|
|
def set_environ(OPENAI_API_KEY: str = "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",
|
|
WOLFRAMALPH_APP_ID: str = "",
|
|
WEATHER_API_KEYS: str = "",
|
|
BING_SUBSCRIPT_KEY: str = "",
|
|
ALPHA_VANTAGE_KEY: str = "",
|
|
BING_MAP_KEY: str = "",
|
|
BAIDU_TRANSLATE_KEY: str = "",
|
|
RAPIDAPI_KEY: str = "",
|
|
SERPER_API_KEY: str = "",
|
|
GPLACES_API_KEY: str = "",
|
|
SCENEX_API_KEY: str = "",
|
|
STEAMSHIP_API_KEY: str = "",
|
|
HUGGINGFACE_API_KEY: str = "",
|
|
AMADEUS_ID: str = "",
|
|
AMADEUS_KEY: str = "",
|
|
AWS_ACCESS_KEY_ID: str = "",
|
|
AWS_SECRET_ACCESS_KEY: str = "",
|
|
AWS_DEFAULT_REGION: str = "",
|
|
):
|
|
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
|
os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
|
|
os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
|
|
os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
|
|
os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
|
|
os.environ["BING_MAP_KEY"] = BING_MAP_KEY
|
|
os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
|
|
os.environ["RAPIDAPI_KEY"] = RAPIDAPI_KEY
|
|
os.environ["SERPER_API_KEY"] = SERPER_API_KEY
|
|
os.environ["GPLACES_API_KEY"] = GPLACES_API_KEY
|
|
os.environ["SCENEX_API_KEY"] = SCENEX_API_KEY
|
|
os.environ["STEAMSHIP_API_KEY"] = STEAMSHIP_API_KEY
|
|
os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
|
|
os.environ["AMADEUS_ID"] = AMADEUS_ID
|
|
os.environ["AMADEUS_KEY"] = AMADEUS_KEY
|
|
os.environ["AWS_ACCESS_KEY_ID"] = AWS_ACCESS_KEY_ID
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = AWS_SECRET_ACCESS_KEY
|
|
os.environ["AWS_DEFAULT_REGION"] = AWS_DEFAULT_REGION
|
|
|
|
if not tool_server_flag:
|
|
start_tool_server()
|
|
time.sleep(MAX_SLEEP_TIME)
|
|
|
|
# Check if AWS keys are set and if so, configure AWS
|
|
if AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_DEFAULT_REGION:
|
|
try:
|
|
s3 = boto3.client('s3')
|
|
s3.list_buckets()
|
|
aws_status = "AWS setup successful"
|
|
except NoCredentialsError:
|
|
aws_status = "AWS setup failed: Invalid credentials"
|
|
else:
|
|
aws_status = "Keys set successfully"
|
|
|
|
return gr.update(value="OK!"), aws_status
|
|
|
|
def show_avatar_imgs(tools_chosen):
|
|
if len(tools_chosen) == 0:
|
|
tools_chosen = list(valid_tools_info.keys())
|
|
img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
|
|
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
|
|
imgs = ' '.join([img_template.format(img, img, tool) for img, tool in zip(imgs, tools_chosen)])
|
|
return [gr.update(value='<span class="">' + imgs + '</span>', visible=True), gr.update(visible=True)]
|
|
|
|
def answer_by_tools(question, tools_chosen, model_chosen):
|
|
global return_msg
|
|
return_msg += [(question, None), (None, '...')]
|
|
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
|
|
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
|
|
|
|
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
|
|
tools_chosen = list(valid_tools_info.keys())
|
|
|
|
if len(tools_chosen) == 1:
|
|
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
|
|
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]],
|
|
prompt_type="react-with-tool-description", return_intermediate_steps=True)
|
|
else:
|
|
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(),
|
|
load_valid_tools({k: tools_mappings[k] for k in tools_chosen}),
|
|
stream_output=True, llm=model_chosen)
|
|
|
|
agent_executor = answerer.build_runner()
|
|
|
|
global chat_history
|
|
chat_history += "Question: " + question + "\n"
|
|
question = chat_history
|
|
for inter in agent_executor(question):
|
|
if isinstance(inter, AgentFinish): continue
|
|
result_str = []
|
|
return_msg.pop()
|
|
if isinstance(inter, dict):
|
|
result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
|
|
chat_history += "Answer:" + inter['output'] + "\n"
|
|
result_str.append("...")
|
|
else:
|
|
try:
|
|
not_observation = inter[0].log
|
|
except:
|
|
print(inter[0])
|
|
not_observation = inter[0]
|
|
if not not_observation.startswith('Thought:'):
|
|
not_observation = "Thought: " + not_observation
|
|
chat_history += not_observation
|
|
not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
|
|
not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
|
|
not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
|
|
result_str.append("{}".format(not_observation))
|
|
result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
|
|
chat_history += "\nAction output:" + inter[1] + "\n"
|
|
result_str.append("...")
|
|
return_msg += [(None, result) for result in result_str]
|
|
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
|
|
return_msg.pop()
|
|
if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
|
|
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ",
|
|
"<font color=green>Final Answer:</font> "))
|
|
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
|
|
|
|
|
|
def retrieve(tools_search):
|
|
if tools_search == "":
|
|
return gr.update(choices=all_tools_list)
|
|
else:
|
|
url = "http://127.0.0.1:8079/retrieve"
|
|
param = {
|
|
"query": tools_search
|
|
}
|
|
response = requests.post(url, json=param)
|
|
result = response.json()
|
|
retrieved_tools = result["tools"]
|
|
return gr.update(choices=retrieved_tools)
|
|
|
|
def clear_retrieve():
|
|
return [gr.update(value=""), gr.update(choices=all_tools_list)]
|
|
|
|
|
|
def clear_history():
|
|
global return_msg
|
|
global chat_history
|
|
return_msg = []
|
|
chat_history = ""
|
|
yield gr.update(visible=True, value=return_msg)
|
|
|
|
|
|
|
|
def fetch_tokenizer(model_name):
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
return f"Tokenizer for {model_name} loaded successfully."
|
|
except Exception as e:
|
|
return f"Error loading tokenizer: {str(e)}"
|
|
|
|
# Add this function to handle the button click
|
|
def deploy_on_sky_pilot(model_name: str, tokenizer: str, accelerators: str):
|
|
# Create serving.yaml for SkyPilot deployment
|
|
serving_yaml = {
|
|
"resources": {
|
|
"accelerators": accelerators
|
|
},
|
|
"envs": {
|
|
"MODEL_NAME": model_name,
|
|
"TOKENIZER": AutoTokenizer.from_pretrained(model_name)
|
|
},
|
|
"setup": "conda create -n vllm python=3.9 -y\nconda activate vllm\ngit clone https://github.com/vllm-project/vllm.git\ncd vllm\npip install .\npip install gradio",
|
|
"run": "conda activate vllm\necho 'Starting vllm api server...'\npython -u -m vllm.entrypoints.api_server --model $MODEL_NAME --tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE --tokenizer $TOKENIZER 2>&1 | tee api_server.log &\necho 'Waiting for vllm api server to start...'\nwhile ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done\necho 'Starting gradio server...'\npython vllm/examples/gradio_webserver.py"
|
|
}
|
|
|
|
# Write serving.yaml to file
|
|
with open('serving.yaml', 'w') as f:
|
|
yaml.dump(serving_yaml, f)
|
|
|
|
# Deploy on SkyPilot
|
|
os.system("sky launch serving.yaml")
|
|
|
|
# Add this line where you define your Gradio interface
|
|
|
|
title = 'Swarm Models'
|
|
|
|
# css/js strings
|
|
css = ui.css
|
|
js = ui.js
|
|
css += apply_extensions('css')
|
|
js += apply_extensions('js')
|
|
|
|
# with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as demo:
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
with gr.Column(scale=14):
|
|
gr.Markdown("")
|
|
with gr.Column(scale=1):
|
|
gr.Image(show_label=False, show_download_button=False, value="images/swarmslogobanner.png")
|
|
|
|
with gr.Tab("Key setting"):
|
|
OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
|
|
WOLFRAMALPH_APP_ID = gr.Textbox(label="Wolframalpha app id:", placeholder="Key to use wlframalpha", type="text")
|
|
WEATHER_API_KEYS = gr.Textbox(label="Weather api key:", placeholder="Key to use weather api", type="text")
|
|
BING_SUBSCRIPT_KEY = gr.Textbox(label="Bing subscript key:", placeholder="Key to use bing search", type="text")
|
|
ALPHA_VANTAGE_KEY = gr.Textbox(label="Stock api key:", placeholder="Key to use stock api", type="text")
|
|
BING_MAP_KEY = gr.Textbox(label="Bing map key:", placeholder="Key to use bing map", type="text")
|
|
BAIDU_TRANSLATE_KEY = gr.Textbox(label="Baidu translation key:", placeholder="Key to use baidu translation", type="text")
|
|
RAPIDAPI_KEY = gr.Textbox(label="Rapidapi key:", placeholder="Key to use zillow, airbnb and job search", type="text")
|
|
SERPER_API_KEY = gr.Textbox(label="Serper key:", placeholder="Key to use google serper and google scholar", type="text")
|
|
GPLACES_API_KEY = gr.Textbox(label="Google places key:", placeholder="Key to use google places", type="text")
|
|
SCENEX_API_KEY = gr.Textbox(label="Scenex api key:", placeholder="Key to use sceneXplain", type="text")
|
|
STEAMSHIP_API_KEY = gr.Textbox(label="Steamship api key:", placeholder="Key to use image generation", type="text")
|
|
HUGGINGFACE_API_KEY = gr.Textbox(label="Huggingface api key:", placeholder="Key to use models in huggingface hub", type="text")
|
|
HUGGINGFACE_TOKEN = gr.Textbox(label="HuggingFace Token:", placeholder="Token for huggingface", type="text"),
|
|
AMADEUS_ID = gr.Textbox(label="Amadeus id:", placeholder="Id to use Amadeus", type="text")
|
|
AMADEUS_KEY = gr.Textbox(label="Amadeus key:", placeholder="Key to use Amadeus", type="text")
|
|
AWS_ACCESS_KEY_ID = gr.Textbox(label="AWS Access Key ID:", placeholder="AWS Access Key ID", type="text")
|
|
AWS_SECRET_ACCESS_KEY = gr.Textbox(label="AWS Secret Access Key:", placeholder="AWS Secret Access Key", type="text")
|
|
AWS_DEFAULT_REGION = gr.Textbox(label="AWS Default Region:", placeholder="AWS Default Region", type="text")
|
|
key_set_btn = gr.Button(value="Set keys!")
|
|
|
|
|
|
with gr.Tab("Chat with Tool"):
|
|
with gr.Row():
|
|
with gr.Column(scale=4):
|
|
with gr.Row():
|
|
with gr.Column(scale=0.85):
|
|
txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.",
|
|
lines=1).style(container=False)
|
|
with gr.Column(scale=0.15, min_width=0):
|
|
buttonChat = gr.Button("Chat")
|
|
|
|
memory_utilization = gr.Slider(label="Memory Utilization:", min=0, max=1, step=0.1, default=0.5)
|
|
|
|
chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
|
|
buttonClear = gr.Button("Clear History")
|
|
buttonStop = gr.Button("Stop", visible=False)
|
|
|
|
with gr.Column(scale=4):
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
model_url = gr.Textbox(label="VLLM Model URL:", placeholder="URL to download VLLM model from Hugging Face", type="text");
|
|
buttonDownload = gr.Button("Download Model");
|
|
buttonDownload.click(fn=download_model, inputs=[model_url, memory_utilization]);
|
|
model_chosen = gr.Dropdown(
|
|
list(available_models),
|
|
value=DEFAULTMODEL,
|
|
multiselect=False,
|
|
label="Model provided",
|
|
info="Choose the model to solve your question, Default means ChatGPT."
|
|
)
|
|
tokenizer_output = gr.outputs.Textbox(label="Tokenizer")
|
|
model_chosen.change(fetch_tokenizer, outputs=tokenizer_output)
|
|
available_accelerators = ["A100", "V100", "P100", "K80", "T4", "P4"]
|
|
accelerators = gr.Dropdown(available_accelerators, label="Accelerators:")
|
|
buttonDeploy = gr.Button("Deploy on SkyPilot")
|
|
|
|
buttonDeploy.click(deploy_on_sky_pilot, [model_chosen, tokenizer_output, accelerators, HUGGINGFACE_TOKEN])
|
|
with gr.Row():
|
|
tools_search = gr.Textbox(
|
|
lines=1,
|
|
label="Tools Search",
|
|
placeholder="Please input some text to search tools.",
|
|
)
|
|
buttonSearch = gr.Button("Reset search condition")
|
|
tools_chosen = gr.CheckboxGroup(
|
|
choices=all_tools_list,
|
|
# value=["chemical-prop"],
|
|
label="Tools provided",
|
|
info="Choose the tools to solve your question.",
|
|
)
|
|
|
|
|
|
# TODO finish integrating model flow
|
|
# with gr.Tab("model"):
|
|
# create_inferance();
|
|
# def serve_iframe():
|
|
# return f'hi'
|
|
|
|
# TODO fix webgl galaxy backgroun
|
|
# def serve_iframe():
|
|
# return "<iframe src='http://localhost:8000/shader.html' width='100%' height='400'></iframe>"
|
|
|
|
# iface = gr.Interface(fn=serve_iframe, inputs=[], outputs=gr.outputs.HTML())
|
|
|
|
key_set_btn.click(fn=set_environ, inputs=[
|
|
OPENAI_API_KEY,
|
|
WOLFRAMALPH_APP_ID,
|
|
WEATHER_API_KEYS,
|
|
BING_SUBSCRIPT_KEY,
|
|
ALPHA_VANTAGE_KEY,
|
|
BING_MAP_KEY,
|
|
BAIDU_TRANSLATE_KEY,
|
|
RAPIDAPI_KEY,
|
|
SERPER_API_KEY,
|
|
GPLACES_API_KEY,
|
|
SCENEX_API_KEY,
|
|
STEAMSHIP_API_KEY,
|
|
HUGGINGFACE_API_KEY,
|
|
HUGGINGFACE_TOKEN,
|
|
AMADEUS_ID,
|
|
AMADEUS_KEY,
|
|
], outputs=key_set_btn)
|
|
key_set_btn.click(fn=load_tools, outputs=tools_chosen)
|
|
|
|
tools_search.change(retrieve, tools_search, tools_chosen)
|
|
buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])
|
|
|
|
txt.submit(lambda: [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [],
|
|
[txt, buttonClear, buttonStop])
|
|
inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
|
|
buttonChat.click(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
|
|
buttonStop.click(lambda: [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop],
|
|
cancels=[inference_event])
|
|
buttonClear.click(clear_history, [], chatbot)
|
|
|
|
# demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
|
|
demo.queue().launch()
|
|
|
|
|
|
|