Orchestrate Swarms of Agents From Any Framework Like OpenAI, Langchain, and Etc for Real World Workflow Automation. Join our Community: https://discord.gg/DbjBMJTSWD
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Go to file
Zack 51dea6ba75
feat: Add model example
1 year ago
.github workflows 1 year ago
api code quality 1 year ago
apps code quality 1 year ago
docs fuyu docs 1 year ago
images exa error 1 year ago
infra clean up 2 years ago
playground feat: Add model example 1 year ago
swarms feat: add plugins 1 year ago
tests code quality 1 year ago
.env.example feat: Add env configurations 1 year ago
.gitignore clean up 2 years ago
.pre-commit-config.yaml stacked pre commit 1 year ago
.readthedocs.yml docs setups 1 year ago
CONTRIBUTING.md precommit 1 year ago
Dockerfile Dockerfile for unit tests 1 year ago
LICENSE clean up 2 years ago
README.md pip install -upgrade 1 year ago
bingchat.py fix: Debugging integration 1 year ago
cookies.json fix: Debugging integration 1 year ago
example.py bug fixes, module error swarm. instead of swarms. 1 year ago
mkdocs.yml kosmos docs 1 year ago
pyproject.toml feat: Add requirements 1 year ago
requirements.txt feat: Add requirements 1 year ago
revgpt.py feat: Add model example 1 year ago
setup.py code quality 1 year ago
stacked_worker.py swarms 1 year ago

README.md

Swarming banner icon

Swarms is a modular framework that enables reliable and useful multi-agent collaboration at scale to automate real-world tasks.

GitHub issues GitHub forks GitHub stars GitHub licenseGitHub star chartDependency Status Downloads

Share on Social Media

Join the Agora discordShare on Twitter Share on Facebook Share on LinkedIn

Share on Reddit Share on Hacker News Share on Pinterest Share on WhatsApp

Purpose

At Swarms, we're transforming the landscape of AI from siloed AI agents to a unified 'swarm' of intelligence. Through relentless iteration and the power of collective insight from our 1500+ Agora researchers, we're developing a groundbreaking framework for AI collaboration. Our mission is to catalyze a paradigm shift, advancing Humanity with the power of unified autonomous AI agent swarms.


🤝 Schedule a 1-on-1 Session

Book a 1-on-1 Session with Kye, the Creator, to discuss any issues, provide feedback, or explore how we can improve Swarms for you.


Installation

  • pip3 install --upgrade swarms

Usage

We have a small gallery of examples to run here, for more check out the docs to build your own agent and or swarms!

MultiAgentDebate

  • MultiAgentDebate is a simple class that enables multi agent collaboration.
from swarms.workers import Worker
from swarms.swarms import MultiAgentDebate, select_speaker
from swarms.models import OpenAIChat


api_key = "sk-"

llm = OpenAIChat(
    model_name='gpt-4', 
    openai_api_key=api_key, 
    temperature=0.5
)

node = Worker(
    llm=llm,
    openai_api_key=api_key,
    ai_name="Optimus Prime",
    ai_role="Worker in a swarm",
    external_tools = None,
    human_in_the_loop = False,
    temperature = 0.5,
)

node2 = Worker(
    llm=llm,
    openai_api_key=api_key,
    ai_name="Bumble Bee",
    ai_role="Worker in a swarm",
    external_tools = None,
    human_in_the_loop = False,
    temperature = 0.5,
)

node3 = Worker(
    llm=llm,
    openai_api_key=api_key,
    ai_name="Bumble Bee",
    ai_role="Worker in a swarm",
    external_tools = None,
    human_in_the_loop = False,
    temperature = 0.5,
)

agents = [
    node,
    node2,
    node3
]

# Initialize multi-agent debate with the selection function
debate = MultiAgentDebate(agents, select_speaker)

# Run task
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
results = debate.run(task, max_iters=4)

# Print results
for result in results:
    print(f"Agent {result['agent']} responded: {result['response']}")

Worker

  • The Worker is an fully feature complete agent with an llm, tools, and a vectorstore for long term memory!
  • Place your api key as parameters in the llm if you choose!
  • And, then place the openai api key in the Worker for the openai embedding model
from swarms.models import OpenAIChat
from swarms import Worker

api_key = ""

llm = OpenAIChat(
    openai_api_key=api_key,
    temperature=0.5,
)

node = Worker(
    llm=llm,
    ai_name="Optimus Prime",
    openai_api_key=api_key,
    ai_role="Worker in a swarm",
    external_tools=None,
    human_in_the_loop=False,
    temperature=0.5,
)

task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
response = node.run(task)
print(response)



OmniModalAgent

  • OmniModal Agent is an LLM that access to 10+ multi-modal encoders and diffusers! It can generate images, videos, speech, music and so much more, get started with:
from swarms.models import OpenAIChat
from swarms.agents import OmniModalAgent

api_key = "SK-"

llm = OpenAIChat(model_name="gpt-4", openai_api_key=api_key)

agent = OmniModalAgent(llm)

agent.run("Create a video of a swarm of fish")

  • OmniModal Agent has a ui in the root called python3 omni_ui.py

Documentation

For documentation, go here, swarms.apac.ai


Features

  • Easy to use Base LLMs, OpenAI Palm Anthropic HuggingFace
  • Enterprise Grade, Production Ready with robust Error Handling
  • Multi-Modality Native with Multi-Modal LLMs as tools
  • Infinite Memory Processing: Store infinite sequences of infinite Multi-Modal data, text, images, videos, audio
  • Usability: Extreme emphasis on useability, code is at it's theortical minimum simplicity factor to use
  • Reliability: Outputs that accomplish tasks and activities you wish to execute.
  • Fluidity: A seamless all-around experience to build production grade workflows
  • Speed: Lower the time to automate tasks by 90%.
  • Simplicity: Swarms is extremely simple to use, if not thee simplest agent framework of all time
  • Powerful: Swarms is capable of building entire software apps, to large scale data analysis, and handling chaotic situations

Contribute

We're always looking for contributors to help us improve and expand this project. If you're interested, please check out our Contributing Guidelines.

Optimization Priorities

  1. Reliability: Increase the reliability of the swarm - obtaining the desired output with a basic and un-detailed input.

  2. Speed: Reduce the time it takes for the swarm to accomplish tasks by improving the communication layer, critiquing, and self-alignment with meta prompting.

  3. Scalability: Ensure that the system is asynchronous, concurrent, and self-healing to support scalability.

Our goal is to continuously improve Swarms by following this roadmap, while also being adaptable to new needs and opportunities as they arise.


Demos

Swarms Demo

Swarm Video Demo {Click for more}

Watch the swarm video


Contact

For enterprise and production ready deployments, allow us to discover more about you and your story, book a call with us here