You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/agents/agents.py

121 lines
5.0 KiB

import pytest
from unittest.mock import Mock, patch
from swarms.agents.agents import AgentNodeInitializer, AgentNode, agent # replace with actual import
# For initializing AgentNodeInitializer in multiple tests
@pytest.fixture
def mock_agent_node_initializer():
with patch('your_module.ChatOpenAI') as mock_llm, \
patch('your_module.AutoGPT') as mock_agent:
initializer = AgentNodeInitializer(model_type='openai', model_id='test', openai_api_key='test_key', temperature=0.5)
initializer.llm = mock_llm
initializer.tools = [Mock(spec=BaseTool)]
initializer.vectorstore = Mock()
initializer.agent = mock_agent
return initializer
# Test initialize_llm method of AgentNodeInitializer class
@pytest.mark.parametrize("model_type", ['openai', 'huggingface', 'invalid'])
def test_agent_node_initializer_initialize_llm(model_type, mock_agent_node_initializer):
with patch('your_module.ChatOpenAI') as mock_openai, \
patch('your_module.HuggingFaceLLM') as mock_huggingface:
if model_type == 'invalid':
with pytest.raises(ValueError):
mock_agent_node_initializer.initialize_llm(model_type, 'model_id', 'openai_api_key', 0.5)
else:
mock_agent_node_initializer.initialize_llm(model_type, 'model_id', 'openai_api_key', 0.5)
if model_type == 'openai':
mock_openai.assert_called_once()
elif model_type == 'huggingface':
mock_huggingface.assert_called_once()
# Test add_tool method of AgentNodeInitializer class
def test_agent_node_initializer_add_tool(mock_agent_node_initializer):
with patch('your_module.BaseTool') as mock_base_tool:
mock_agent_node_initializer.add_tool(mock_base_tool)
assert mock_base_tool in mock_agent_node_initializer.tools
# Test run method of AgentNodeInitializer class
@pytest.mark.parametrize("prompt", ['valid prompt', ''])
def test_agent_node_initializer_run(prompt, mock_agent_node_initializer):
if prompt == '':
with pytest.raises(ValueError):
mock_agent_node_initializer.run(prompt)
else:
assert mock_agent_node_initializer.run(prompt) == "Task completed by AgentNode"
# For initializing AgentNode in multiple tests
@pytest.fixture
def mock_agent_node():
with patch('your_module.ChatOpenAI') as mock_llm, \
patch('your_module.AgentNodeInitializer') as mock_agent_node_initializer:
mock_agent_node = AgentNode('test_key')
mock_agent_node.llm_class = mock_llm
mock_agent_node.vectorstore = Mock()
mock_agent_node_initializer.llm = mock_llm
return mock_agent_node
# Test initialize_llm method of AgentNode class
@pytest.mark.parametrize("llm_class", ['openai', 'huggingface'])
def test_agent_node_initialize_llm(llm_class, mock_agent_node):
with patch('your_module.ChatOpenAI') as mock_openai, \
patch('your_module.HuggingFaceLLM') as mock_huggingface:
mock_agent_node.initialize_llm(llm_class)
if llm_class == 'openai':
mock_openai.assert_called_once()
elif llm_class == 'huggingface':
mock_huggingface.assert_called_once()
# Test initialize_tools method of AgentNode class
def test_agent_node_initialize_tools(mock_agent_node):
with patch('your_module.DuckDuckGoSearchRun') as mock_ddg, \
patch('your_module.WriteFileTool') as mock_write_file, \
patch('your_module.ReadFileTool') as mock_read_file, \
patch('your_module.process_csv') as mock_process_csv, \
patch('your_module.WebpageQATool') as mock_webpage_qa:
mock_agent_node.initialize_tools('openai')
assert mock_ddg.called
assert mock_write_file.called
assert mock_read_file.called
assert mock_process_csv.called
assert mock_webpage_qa.called
# Test create_agent method of AgentNode class
def test_agent_node_create_agent(mock_agent_node):
with patch.object(mock_agent_node, 'initialize_llm'), \
patch.object(mock_agent_node, 'initialize_tools'), \
patch.object(mock_agent_node, 'initialize_vectorstore'), \
patch('your_module.AgentNodeInitializer') as mock_agent_node_initializer:
mock_agent_node.create_agent()
mock_agent_node_initializer.assert_called_once()
mock_agent_node_initializer.return_value.create_agent.assert_called_once()
# Test agent function
@pytest.mark.parametrize("openai_api_key,objective", [('valid_key', 'valid_objective'), ('', 'valid_objective'), ('valid_key', '')])
def test_agent(openai_api_key, objective):
if openai_api_key == '' or objective == '':
with pytest.raises(ValueError):
agent(openai_api_key, objective)
else:
with patch('your_module.AgentNodeInitializer') as mock_agent_node_initializer:
mock_agent_node = mock_agent_node_initializer.return_value.create_agent.return_value
mock_agent_node.run.return_value = 'Agent output'
result = agent(openai_api_key, objective)
assert result == 'Agent output'