You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/models/huggingface.py

252 lines
9.4 KiB

from unittest.mock import patch
import pytest
import torch
from swarms.models.huggingface import (
HuggingfaceLLM, # Replace with the actual import path
)
# Fixture for the class instance
@pytest.fixture
def llm_instance():
model_id = "gpt2-small"
instance = HuggingfaceLLM(model_id=model_id)
return instance
# Test for instantiation and attributes
def test_llm_initialization(llm_instance):
assert llm_instance.model_id == "gpt2-small"
assert llm_instance.max_length == 500
# ... add more assertions for all default attributes
# Parameterized test for setting devices
@pytest.mark.parametrize("device", ["cpu", "cuda"])
def test_llm_set_device(llm_instance, device):
llm_instance.set_device(device)
assert llm_instance.device == device
# Test exception during initialization with a bad model_id
def test_llm_bad_model_initialization():
with pytest.raises(Exception):
HuggingfaceLLM(model_id="unknown-model")
# Mocking the tokenizer and model to test run method
@patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
@patch("swarms.models.huggingface.AutoModelForCausalLM.from_pretrained")
def test_llm_run(mock_model, mock_tokenizer, llm_instance):
mock_model.return_value.generate.return_value = "mocked output"
mock_tokenizer.return_value.encode.return_value = "mocked input"
result = llm_instance.run("test task")
assert result == "mocked output"
# Async test (requires pytest-asyncio plugin)
@pytest.mark.asyncio
async def test_llm_run_async(llm_instance):
result = await llm_instance.run_async("test task")
assert isinstance(result, str)
# Test for checking GPU availability
def test_llm_gpu_availability(llm_instance):
# Assuming the test is running on a machine where the GPU availability is known
expected_result = torch.cuda.is_available()
assert llm_instance.gpu_available() == expected_result
# Test for memory consumption reporting
def test_llm_memory_consumption(llm_instance):
# Mocking torch.cuda functions for consistent results
with patch("torch.cuda.memory_allocated", return_value=1024):
with patch("torch.cuda.memory_reserved", return_value=2048):
memory = llm_instance.memory_consumption()
assert memory == {"allocated": 1024, "reserved": 2048}
# Test different initialization parameters
@pytest.mark.parametrize(
"model_id, max_length",
[
("gpt2-small", 100),
("gpt2-medium", 200),
("gpt2-large", None), # None to check default behavior
],
)
def test_llm_initialization_params(model_id, max_length):
if max_length:
instance = HuggingfaceLLM(model_id=model_id, max_length=max_length)
assert instance.max_length == max_length
else:
instance = HuggingfaceLLM(model_id=model_id)
assert instance.max_length == 500 # Assuming 500 is the default max_length
# Test for setting an invalid device
def test_llm_set_invalid_device(llm_instance):
with pytest.raises(ValueError):
llm_instance.set_device("quantum_processor")
# Test for model download progress bar
@patch("swarms.models.huggingface.HuggingfaceLLM._download_model")
def test_llm_model_download_progress(mock_download, llm_instance):
llm_instance.download_model_with_progress()
mock_download.assert_called_once()
# Mocking external API call to test run method without network
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_without_network(mock_run, llm_instance):
mock_run.return_value = "mocked output"
result = llm_instance.run("test task without network")
assert result == "mocked output"
# Test handling of empty input for the run method
def test_llm_run_empty_input(llm_instance):
with pytest.raises(ValueError):
llm_instance.run("")
# Test the generation with a provided seed for reproducibility
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_with_seed(mock_run, llm_instance):
seed = 42
llm_instance.set_seed(seed)
# Assuming set_seed method affects the randomness in the model
# You would typically ensure that setting the seed gives reproducible results
mock_run.return_value = "mocked deterministic output"
result = llm_instance.run("test task", seed=seed)
assert result == "mocked deterministic output"
# Test the output length is as expected
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_output_length(mock_run, llm_instance):
input_text = "test task"
llm_instance.max_length = 50 # set a max_length for the output
mock_run.return_value = "mocked output" * 10 # some long text
result = llm_instance.run(input_text)
assert len(result.split()) <= llm_instance.max_length
# Test the tokenizer handling special tokens correctly
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.encode")
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.decode")
def test_llm_tokenizer_special_tokens(mock_decode, mock_encode, llm_instance):
mock_encode.return_value = "encoded input with special tokens"
mock_decode.return_value = "decoded output with special tokens"
result = llm_instance.run("test task with special tokens")
mock_encode.assert_called_once()
mock_decode.assert_called_once()
assert "special tokens" in result
# Test for correct handling of timeouts
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_timeout_handling(mock_run, llm_instance):
mock_run.side_effect = TimeoutError
with pytest.raises(TimeoutError):
llm_instance.run("test task with timeout")
# Test for response time within a threshold (performance test)
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_response_time(mock_run, llm_instance):
import time
mock_run.return_value = "mocked output"
start_time = time.time()
llm_instance.run("test task for response time")
end_time = time.time()
assert (
end_time - start_time < 1
) # Assuming the response should be faster than 1 second
# Test the logging of a warning for long inputs
@patch("swarms.models.huggingface.logging.warning")
def test_llm_long_input_warning(mock_warning, llm_instance):
long_input = "x" * 10000 # input longer than the typical limit
llm_instance.run(long_input)
mock_warning.assert_called_once()
# Test for run method behavior when model raises an exception
@patch(
"swarms.models.huggingface.HuggingfaceLLM._model.generate", side_effect=RuntimeError
)
def test_llm_run_model_exception(mock_generate, llm_instance):
with pytest.raises(RuntimeError):
llm_instance.run("test task when model fails")
# Test the behavior when GPU is forced but not available
@patch("torch.cuda.is_available", return_value=False)
def test_llm_force_gpu_when_unavailable(mock_is_available, llm_instance):
with pytest.raises(EnvironmentError):
llm_instance.set_device("cuda") # Attempt to set CUDA when it's not available
# Test for proper cleanup after model use (releasing resources)
@patch("swarms.models.huggingface.HuggingfaceLLM._model")
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer")
def test_llm_cleanup(mock_model, mock_tokenizer, llm_instance):
llm_instance.cleanup()
# Assuming cleanup method is meant to free resources
mock_model.delete.assert_called_once()
mock_tokenizer.delete.assert_called_once()
# Test updating the configuration after instantiation
def test_llm_update_configuration(llm_instance):
new_config = {"temperature": 0.7}
llm_instance.update_configuration(new_config)
assert llm_instance.configuration["temperature"] == 0.7
# Test if the model is re-downloaded when changing the model_id
@patch("swarms.models.huggingface.HuggingfaceLLM._download_model")
def test_llm_change_model_id(mock_download, llm_instance):
new_model_id = "gpt2-xl"
llm_instance.model_id = new_model_id
mock_download.assert_called_with(new_model_id)
# Test model's ability to handle multilingual input
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_multilingual_input(mock_run, llm_instance):
mock_run.return_value = "mocked multilingual output"
multilingual_input = "Bonjour, ceci est un test multilingue."
result = llm_instance.run(multilingual_input)
assert isinstance(result, str) # Simple check to ensure output is string type
# Test caching mechanism to prevent re-running the same inputs
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_caching_mechanism(mock_run, llm_instance):
input_text = "test caching mechanism"
mock_run.return_value = "cached output"
# Run the input twice
first_run_result = llm_instance.run(input_text)
second_run_result = llm_instance.run(input_text)
mock_run.assert_called_once() # Should only be called once due to caching
assert first_run_result == second_run_result
# Ensure that model re-downloads when force_download flag is set
@patch("swarms.models.huggingface.HuggingfaceLLM._download_model")
def test_llm_force_download(mock_download, llm_instance):
llm_instance.download_model_with_progress(force_download=True)
mock_download.assert_called_once_with(llm_instance.model_id, force=True)
# These tests are provided as examples. In real-world scenarios, you will need to adapt these tests to the actual logic of your `HuggingfaceLLM` class.
# For instance, "mock_model.delete.assert_called_once()" and similar lines are based on hypothetical methods and behaviors that you need to replace with actual implementations.