You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/hiearchical_swarm.py

178 lines
5.2 KiB

from typing import List
from pydantic import BaseModel, Field
from swarms.structs.agent import Agent
from swarms.structs.base_swarm import BaseSwarm
from swarms.utils.loguru_logger import logger
from swarms.models.popular_llms import Anthropic, OpenAIChat
from swarms.models.base_llm import BaseLLM
from swarms.memory.base_vectordb import BaseVectorDatabase
boss_sys_prompt = (
"You're the Swarm Orchestrator, like a project manager of a"
" bustling hive. When a task arises, you tap into your network of"
" worker agents who are ready to jump into action. Whether it's"
" organizing data, handling logistics, or crunching numbers, you"
" delegate tasks strategically to maximize efficiency. Picture"
" yourself as the conductor of a well-oiled machine,"
" orchestrating the workflow seamlessly to achieve optimal"
" results with your team of dedicated worker agents."
)
class AgentSchema(BaseModel):
name: str = Field(
...,
title="Name of the agent",
description="Name of the agent",
)
system_prompt: str = (
Field(
...,
title="System prompt for the agent",
description="System prompt for the agent",
),
)
rules: str = Field(
...,
title="Rules",
description="Rules for the agent",
)
llm: str = Field(
...,
title="Language model",
description="Language model for the agent: `GPT4` or `Claude",
)
# tools: List[ToolSchema] = Field(
# ...,
# title="Tools available to the agent",
# description="Either `browser` or `terminal`",
# )
# task: str = Field(
# ...,
# title="Task assigned to the agent",
# description="Task assigned to the agent",
# )
# TODO: Add more fields here such as the agent's language model, tools, etc.
class HassSchema(BaseModel):
plan: str = Field(
...,
title="Plan to solve the input problem",
description="List of steps to solve the problem",
)
agents: List[AgentSchema] = Field(
...,
title="List of agents to use for the problem",
description="List of agents to use for the problem",
)
# Rules for the agents
rules: str = Field(
...,
title="Rules for the agents",
description="Rules for the agents",
)
class HiearchicalSwarm(BaseSwarm):
def __init__(
self,
director: Agent = None,
subordinates: List[Agent] = [],
workers: List[Agent] = [],
director_sys_prompt: str = boss_sys_prompt,
director_name: str = "Swarm Orchestrator",
director_agent_creation_schema: BaseModel = HassSchema,
director_llm: BaseLLM = Anthropic,
communication_protocol: BaseVectorDatabase = None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.director = director
self.subordinates = subordinates
self.workers = workers
self.director_sys_prompt = director_sys_prompt
self.director_name = director_name
self.director_agent_creation_schema = (
director_agent_creation_schema
)
self.director_llm = director_llm
self.communication_protocol = communication_protocol
def create_director(self, *args, **kwargs):
"""
Create the director agent based on the provided schema.
"""
name = self.director_name
system_prompt = self.director_sys_prompt
director_llm = self.director_llm
if director_llm == Anthropic:
Anthropic(*args, **kwargs)
elif director_llm == OpenAIChat:
OpenAIChat(*args, **kwargs)
logger.info(
f"Creating Director Agent: {name} with system prompt:"
f" {system_prompt}"
)
director = Agent(
agent_name=name,
system_prompt=system_prompt,
llm=director_llm,
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
stopping_token="<DONE>",
)
return director
def create_worker_agents(
agents: List[AgentSchema],
) -> List[Agent]:
"""
Create and initialize agents based on the provided AgentSchema objects.
Args:
agents (List[AgentSchema]): A list of AgentSchema objects containing agent information.
Returns:
List[Agent]: The initialized Agent objects.
"""
agent_list = []
for agent in agents:
name = agent.name
system_prompt = agent.system_prompt
logger.info(
f"Creating agent: {name} with system prompt:"
f" {system_prompt}"
)
out = Agent(
agent_name=name,
system_prompt=system_prompt,
# llm=Anthropic(
# anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")
# ),
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
stopping_token="<DONE>",
)
# network.add_agent(out)
agent_list.append(out)
return agent_list