You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/playground/demos/urban_planning/urban_planning_example.py

85 lines
2.4 KiB

import os
from dotenv import load_dotenv
from swarms.models import OpenAIChat, GPT4VisionAPI
from swarms.structs import Agent, SequentialWorkflow
import swarms.prompts.urban_planning as upp
# Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABILITY_API_KEY")
# Initialize language model
llm = OpenAIChat(
openai_api_key=api_key, temperature=0.5, max_tokens=3000
)
# Initialize Vision model
vision_api = GPT4VisionAPI(api_key=api_key)
# Initialize agents for urban planning tasks
architecture_analysis_agent = Agent(
llm=llm, max_loops=1, sop=upp.ARCHITECTURE_ANALYSIS_PROMPT
)
infrastructure_evaluation_agent = Agent(
llm=llm, max_loops=1, sop=upp.INFRASTRUCTURE_EVALUATION_PROMPT
)
traffic_flow_analysis_agent = Agent(
llm=llm, max_loops=1, sop=upp.TRAFFIC_FLOW_ANALYSIS_PROMPT
)
environmental_impact_assessment_agent = Agent(
llm=llm,
max_loops=1,
sop=upp.ENVIRONMENTAL_IMPACT_ASSESSMENT_PROMPT,
)
public_space_utilization_agent = Agent(
llm=llm, max_loops=1, sop=upp.PUBLIC_SPACE_UTILIZATION_PROMPT
)
socioeconomic_impact_analysis_agent = Agent(
llm=llm, max_loops=1, sop=upp.SOCIOECONOMIC_IMPACT_ANALYSIS_PROMPT
)
# Initialize the final planning agent
final_plan_agent = Agent(
llm=llm, max_loops=1, sop=upp.FINAL_URBAN_IMPROVEMENT_PLAN_PROMPT
)
# Create Sequential Workflow
workflow = SequentialWorkflow(max_loops=1)
# Add tasks to workflow with personalized prompts
workflow.add(architecture_analysis_agent, "Architecture Analysis")
workflow.add(
infrastructure_evaluation_agent, "Infrastructure Evaluation"
)
workflow.add(traffic_flow_analysis_agent, "Traffic Flow Analysis")
workflow.add(
environmental_impact_assessment_agent,
"Environmental Impact Assessment",
)
workflow.add(
public_space_utilization_agent, "Public Space Utilization"
)
workflow.add(
socioeconomic_impact_analysis_agent,
"Socioeconomic Impact Analysis",
)
workflow.add(
final_plan_agent,
(
"Generate the final urban improvement plan based on all"
" previous agent's findings"
),
)
# Run the workflow for individual analysis tasks
# Execute the workflow for the final planning
workflow.run()
# Output results for each task and the final plan
for task in workflow.tasks:
print(
f"Task Description: {task.description}\nResult:"
f" {task.result}\n"
)