You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/playground/demos/multimodal_tot/idea2img.py

186 lines
6.2 KiB

import datetime
import os
import streamlit as st
from dotenv import load_dotenv
from swarms.models import OpenAIChat
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.models.stable_diffusion import StableDiffusion
from swarms.structs import Agent
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABLE_API_KEY")
# Initialize the models
vision_api = GPT4VisionAPI(api_key=openai_api_key)
sd_api = StableDiffusion(api_key=stability_api_key)
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
class Idea2Image(Agent):
def __init__(self, llm, vision_api):
super().__init__(llm=llm)
self.vision_api = vision_api
def run(self, initial_prompt, num_iterations, run_folder):
current_prompt = initial_prompt
for i in range(num_iterations):
print(f"Iteration {i}: Image generation and analysis")
if i == 0:
current_prompt = self.enrich_prompt(current_prompt)
print(f"Enriched Prompt: {current_prompt}")
img = sd_api.generate_and_move_image(
current_prompt, i, run_folder
)
if not img:
print("Failed to generate image")
break
print(f"Generated image at: {img}")
analysis = (
self.vision_api.run(img, current_prompt)
if img
else None
)
if analysis:
current_prompt += (
". " + analysis[:500]
) # Ensure the analysis is concise
print(f"Image Analysis: {analysis}")
else:
print(f"Failed to analyze image at: {img}")
def enrich_prompt(self, prompt):
enrichment_task = (
"Create a concise and effective image generation prompt"
" within 400 characters or less, based on Stable"
" Diffusion and Dalle best practices to help it create"
" much better images. Starting prompt:"
f" \n\n'{prompt}'\n\nImprove the prompt with any"
" applicable details or keywords by considering the"
" following aspects: \n1. Subject details (like actions,"
" emotions, environment) \n2. Artistic style (such as"
" surrealism, hyperrealism) \n3. Medium (digital"
" painting, oil on canvas) \n4. Color themes and"
" lighting (like warm colors, cinematic lighting) \n5."
" Composition and framing (close-up, wide-angle) \n6."
" Additional elements (like a specific type of"
" background, weather conditions) \n7. Any other"
" artistic or thematic details that can make the image"
" more vivid and compelling. Help the image generator"
" create better images by enriching the prompt."
)
llm_result = self.llm.generate([enrichment_task])
return (
llm_result.generations[0][0].text[:500]
if llm_result.generations
else None
)
def run_gradio(self, initial_prompt, num_iterations, run_folder):
results = []
current_prompt = initial_prompt
for i in range(num_iterations):
enriched_prompt = (
self.enrich_prompt(current_prompt)
if i == 0
else current_prompt
)
img_path = sd_api.generate_and_move_image(
enriched_prompt, i, run_folder
)
analysis = (
self.vision_api.run(img_path, enriched_prompt)
if img_path
else None
)
if analysis:
current_prompt += (
". " + analysis[:500]
) # Ensuring the analysis is concise
results.append((enriched_prompt, img_path, analysis))
return results
# print(
# colored("---------------------------------------- MultiModal Tree of Thought agents for Image Generation", "cyan", attrs=["bold"])
# )
# # User input and setup
# user_prompt = input("Prompt for image generation: ")
# num_iterations = int(
# input("Enter the number of iterations for image improvement: ")
# )
# run_folder = os.path.join(
# "runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# )
# os.makedirs(run_folder, exist_ok=True)
# print(
# colored(
# f"---------------------------------- Running Multi-Modal Tree of thoughts agent with {num_iterations} iterations", "green"
# )
# )
# # Initialize and run the agent
# idea2image_agent = Idea2Image(gpt_api, vision_api)
# idea2image_agent.run(user_prompt, num_iterations, run_folder)
# print("Idea space has been traversed.")
# Load environment variables and initialize the models
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABLE_API_KEY")
vision_api = GPT4VisionAPI(api_key=openai_api_key)
sd_api = StableDiffusion(api_key=stability_api_key)
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
# Define the modified Idea2Image class here
# Streamlit UI layout
st.title(
"Explore the infinite Multi-Modal Idea Space with Idea2Image"
)
user_prompt = st.text_input("Prompt for image generation:")
num_iterations = st.number_input(
"Enter the number of iterations for image improvement:",
min_value=1,
step=1,
)
if st.button("Generate Image"):
run_folder = os.path.join(
"runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
)
os.makedirs(run_folder, exist_ok=True)
idea2image_agent = Idea2Image(gpt_api, vision_api)
results = idea2image_agent.run_gradio(
user_prompt, num_iterations, run_folder
)
for i, (enriched_prompt, img_path, analysis) in enumerate(
results
):
st.write(f"Iteration {i+1}:")
st.write("Enriched Prompt:", enriched_prompt)
if img_path:
st.image(img_path, caption="Generated Image")
else:
st.error("Failed to generate image")
if analysis:
st.write("Image Analysis:", analysis)
st.success("Idea space has been traversed.")
# [Add any additional necessary code adjustments]