You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
5.8 KiB
177 lines
5.8 KiB
from __future__ import annotations
|
|
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
from langchain.memory.utils import get_prompt_input_key
|
|
from pydantic import BaseModel, Field
|
|
|
|
from swarms.models.prompts.base import AIMessage, BaseMessage, HumanMessage
|
|
from swarms.utils.serializable import Serializable
|
|
|
|
|
|
class BaseMemory(Serializable, ABC):
|
|
"""Abstract base class for memory in Chains.
|
|
|
|
Memory refers to state in Chains. Memory can be used to store information about
|
|
past executions of a Chain and inject that information into the inputs of
|
|
future executions of the Chain. For example, for conversational Chains Memory
|
|
can be used to store conversations and automatically add them to future model
|
|
prompts so that the model has the necessary context to respond coherently to
|
|
the latest input.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
class SimpleMemory(BaseMemory):
|
|
memories: Dict[str, Any] = dict()
|
|
|
|
@property
|
|
def memory_variables(self) -> List[str]:
|
|
return list(self.memories.keys())
|
|
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
return self.memories
|
|
|
|
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
|
|
pass
|
|
|
|
def clear(self) -> None:
|
|
pass
|
|
""" # noqa: E501
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
@abstractmethod
|
|
def memory_variables(self) -> List[str]:
|
|
"""The string keys this memory class will add to chain inputs."""
|
|
|
|
@abstractmethod
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Return key-value pairs given the text input to the chain."""
|
|
|
|
@abstractmethod
|
|
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
|
|
"""Save the context of this chain run to memory."""
|
|
|
|
@abstractmethod
|
|
def clear(self) -> None:
|
|
"""Clear memory contents."""
|
|
|
|
|
|
|
|
|
|
class BaseChatMessageHistory(ABC):
|
|
"""Abstract base class for storing chat message history.
|
|
|
|
See `ChatMessageHistory` for default implementation.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
class FileChatMessageHistory(BaseChatMessageHistory):
|
|
storage_path: str
|
|
session_id: str
|
|
|
|
@property
|
|
def messages(self):
|
|
with open(os.path.join(storage_path, session_id), 'r:utf-8') as f:
|
|
messages = json.loads(f.read())
|
|
return messages_from_dict(messages)
|
|
|
|
def add_message(self, message: BaseMessage) -> None:
|
|
messages = self.messages.append(_message_to_dict(message))
|
|
with open(os.path.join(storage_path, session_id), 'w') as f:
|
|
json.dump(f, messages)
|
|
|
|
def clear(self):
|
|
with open(os.path.join(storage_path, session_id), 'w') as f:
|
|
f.write("[]")
|
|
"""
|
|
|
|
messages: List[BaseMessage]
|
|
"""A list of Messages stored in-memory."""
|
|
|
|
def add_user_message(self, message: str) -> None:
|
|
"""Convenience method for adding a human message string to the store.
|
|
|
|
Args:
|
|
message: The string contents of a human message.
|
|
"""
|
|
self.add_message(HumanMessage(content=message))
|
|
|
|
def add_ai_message(self, message: str) -> None:
|
|
"""Convenience method for adding an AI message string to the store.
|
|
|
|
Args:
|
|
message: The string contents of an AI message.
|
|
"""
|
|
self.add_message(AIMessage(content=message))
|
|
|
|
# TODO: Make this an abstractmethod.
|
|
def add_message(self, message: BaseMessage) -> None:
|
|
"""Add a Message object to the store.
|
|
|
|
Args:
|
|
message: A BaseMessage object to store.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def clear(self) -> None:
|
|
"""Remove all messages from the store"""
|
|
|
|
|
|
class ChatMessageHistory(BaseChatMessageHistory, BaseModel):
|
|
"""In memory implementation of chat message history.
|
|
|
|
Stores messages in an in memory list.
|
|
"""
|
|
|
|
messages: List[BaseMessage] = []
|
|
|
|
def add_message(self, message: BaseMessage) -> None:
|
|
"""Add a self-created message to the store"""
|
|
self.messages.append(message)
|
|
|
|
def clear(self) -> None:
|
|
self.messages = []
|
|
|
|
class BaseChatMemory(BaseMemory, ABC):
|
|
"""Abstract base class for chat memory."""
|
|
|
|
chat_memory: BaseChatMessageHistory = Field(default_factory=ChatMessageHistory)
|
|
output_key: Optional[str] = None
|
|
input_key: Optional[str] = None
|
|
return_messages: bool = False
|
|
|
|
def _get_input_output(
|
|
self, inputs: Dict[str, Any], outputs: Dict[str, str]
|
|
) -> Tuple[str, str]:
|
|
if self.input_key is None:
|
|
prompt_input_key = get_prompt_input_key(inputs, self.memory_variables)
|
|
else:
|
|
prompt_input_key = self.input_key
|
|
if self.output_key is None:
|
|
if len(outputs) != 1:
|
|
raise ValueError(f"One output key expected, got {outputs.keys()}")
|
|
output_key = list(outputs.keys())[0]
|
|
else:
|
|
output_key = self.output_key
|
|
return inputs[prompt_input_key], outputs[output_key]
|
|
|
|
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
|
|
"""Save context from this conversation to buffer."""
|
|
input_str, output_str = self._get_input_output(inputs, outputs)
|
|
self.chat_memory.add_user_message(input_str)
|
|
self.chat_memory.add_ai_message(output_str)
|
|
|
|
def clear(self) -> None:
|
|
"""Clear memory contents."""
|
|
self.chat_memory.clear()
|
|
|