You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/sequential_workflow.py

361 lines
12 KiB

import json
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
from termcolor import colored
from swarms.structs.task import Task
from swarms.utils.logger import logger
# SequentialWorkflow class definition using dataclasses
@dataclass
class SequentialWorkflow:
"""
SequentialWorkflow class for running a sequence of task_pool using N number of autonomous agents.
Args:
max_loops (int): The maximum number of times to run the workflow.
dashboard (bool): Whether to display the dashboard for the workflow.
Attributes:
task_pool (List[Task]): The list of task_pool to execute.
max_loops (int): The maximum number of times to run the workflow.
dashboard (bool): Whether to display the dashboard for the workflow.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="", openai_org_id="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.run()
>>> workflow.task_pool
"""
name: str = None
description: str = None
task_pool: List[Task] = field(default_factory=list)
max_loops: int = 1
autosave: bool = False
saved_state_filepath: Optional[str] = (
"sequential_workflow_state.json"
)
restore_state_filepath: Optional[str] = None
dashboard: bool = False
def add(
self,
task: Optional[Task] = None,
tasks: Optional[List[Task]] = None,
*args,
**kwargs,
) -> None:
"""
Add a task to the workflow.
Args:
agent (Union[Callable, Agent]): The model or agent to execute the task.
task (str): The task description or the initial input for the Agent.
*args: Additional arguments to pass to the task execution.
**kwargs: Additional keyword arguments to pass to the task execution.
"""
try:
# If the agent is a Task instance, we include the task in kwargs for Agent.run()
# Append the task to the task_pool list
if task:
self.task_pool.append(task)
logger.info(
f"[INFO][SequentialWorkflow] Added task {task} to"
" workflow"
)
elif tasks:
for task in tasks:
self.task_pool.append(task)
logger.info(
"[INFO][SequentialWorkflow] Added task"
f" {task} to workflow"
)
else:
if task and tasks is not None:
# Add the task and list of tasks to the task_pool at the same time
self.task_pool.append(task)
for task in tasks:
self.task_pool.append(task)
except Exception as error:
logger.error(
colored(
f"Error adding task to workflow: {error}", "red"
),
)
def reset_workflow(self) -> None:
"""Resets the workflow by clearing the results of each task."""
try:
for task in self.task_pool:
task.result = None
logger.info(
f"[INFO][SequentialWorkflow] Reset task {task} in"
" workflow"
)
except Exception as error:
logger.error(
colored(f"Error resetting workflow: {error}", "red"),
)
def get_task_results(self) -> Dict[str, Any]:
"""
Returns the results of each task in the workflow.
Returns:
Dict[str, Any]: The results of each task in the workflow
"""
try:
return {
task.description: task.result
for task in self.task_pool
}
except Exception as error:
logger.error(
colored(
f"Error getting task results: {error}", "red"
),
)
def remove_task(self, task: Task) -> None:
"""Remove task_pool from sequential workflow"""
try:
self.task_pool.remove(task)
logger.info(
f"[INFO][SequentialWorkflow] Removed task {task} from"
" workflow"
)
except Exception as error:
logger.error(
colored(
f"Error removing task from workflow: {error}",
"red",
),
)
def save_workflow_state(
self,
filepath: Optional[str] = "sequential_workflow_state.json",
**kwargs,
) -> None:
"""
Saves the workflow state to a json file.
Args:
filepath (str): The path to save the workflow state to.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="", openai_org_id="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.save_workflow_state("sequential_workflow_state.json")
"""
try:
filepath = filepath or self.saved_state_filepath
with open(filepath, "w") as f:
# Saving the state as a json for simplicuty
state = {
"task_pool": [
{
"description": task.description,
"args": task.args,
"kwargs": task.kwargs,
"result": task.result,
"history": task.history,
}
for task in self.task_pool
],
"max_loops": self.max_loops,
}
json.dump(state, f, indent=4)
logger.info(
"[INFO][SequentialWorkflow] Saved workflow state to"
f" {filepath}"
)
except Exception as error:
logger.error(
colored(
f"Error saving workflow state: {error}",
"red",
)
)
def workflow_bootup(self, **kwargs) -> None:
"""
Workflow bootup.
"""
print(
colored(
"""
Sequential Workflow Initializing...""",
"green",
attrs=["bold", "underline"],
)
)
def workflow_dashboard(self, **kwargs) -> None:
"""
Displays a dashboard for the workflow.
Args:
**kwargs: Additional keyword arguments to pass to the dashboard.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="", openai_org_id="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.workflow_dashboard()
"""
print(
colored(
f"""
Sequential Workflow Dashboard
--------------------------------
Name: {self.name}
Description: {self.description}
task_pool: {len(self.task_pool)}
Max Loops: {self.max_loops}
Autosave: {self.autosave}
Autosave Filepath: {self.saved_state_filepath}
Restore Filepath: {self.restore_state_filepath}
--------------------------------
Metadata:
kwargs: {kwargs}
""",
"cyan",
attrs=["bold", "underline"],
)
)
def workflow_shutdown(self, **kwargs) -> None:
"""Shuts down the workflow."""
print(
colored(
"""
Sequential Workflow Shutdown...""",
"red",
attrs=["bold", "underline"],
)
)
def load_workflow_state(
self, filepath: str = None, **kwargs
) -> None:
"""
Loads the workflow state from a json file and restores the workflow state.
Args:
filepath (str): The path to load the workflow state from.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import SequentialWorkflow
>>> llm = OpenAIChat(openai_api_key="", openai_org_id="")
>>> workflow = SequentialWorkflow(max_loops=1)
>>> workflow.add("What's the weather in miami", llm)
>>> workflow.add("Create a report on these metrics", llm)
>>> workflow.save_workflow_state("sequential_workflow_state.json")
>>> workflow.load_workflow_state("sequential_workflow_state.json")
"""
try:
filepath = filepath or self.restore_state_filepath
with open(filepath, "r") as f:
state = json.load(f)
self.max_loops = state["max_loops"]
self.task_pool = []
for task_state in state["task_pool"]:
task = Task(
description=task_state["description"],
agent=task_state["agent"],
args=task_state["args"],
kwargs=task_state["kwargs"],
result=task_state["result"],
history=task_state["history"],
)
self.task_pool.append(task)
print(
"[INFO][SequentialWorkflow] Loaded workflow state"
f" from {filepath}"
)
except Exception as error:
logger.error(
colored(
f"Error loading workflow state: {error}",
"red",
)
)
def run(self) -> None:
"""
Run the workflow.
Raises:
ValueError: If a Agent instance is used as a task and the 'task' argument is not provided.
"""
try:
self.workflow_bootup()
loops = 0
while loops < self.max_loops:
for i in range(len(self.task_pool)):
task = self.task_pool[i]
# Check if the current task can be executed
if task.result is None:
# Get the inputs for the current task
task.context(task)
result = task.execute()
# Pass the inputs to the next task
if i < len(self.task_pool) - 1:
next_task = self.task_pool[i + 1]
next_task.description = result
# Execute the current task
task.execute()
# Autosave the workflow state
if self.autosave:
self.save_workflow_state(
"sequential_workflow_state.json"
)
self.workflow_shutdown()
loops += 1
except Exception as e:
logger.error(
colored(
(
"Error initializing the Sequential workflow:"
f" {e} try optimizing your inputs like the"
" agent class and task description"
),
"red",
attrs=["bold", "underline"],
)
)