You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
5.8 KiB
180 lines
5.8 KiB
import inspect
|
|
import os
|
|
import threading
|
|
from typing import Callable, List
|
|
|
|
from swarms.prompts.documentation import DOCUMENTATION_WRITER_SOP
|
|
from swarms import Agent, OpenAIChat
|
|
from swarms.utils.loguru_logger import logger
|
|
import concurrent
|
|
|
|
#########
|
|
from swarms.utils.file_processing import (
|
|
load_json,
|
|
sanitize_file_path,
|
|
zip_workspace,
|
|
create_file_in_folder,
|
|
zip_folders,
|
|
)
|
|
|
|
|
|
class PythonDocumentationSwarm:
|
|
"""
|
|
A class for automating the documentation process for Python classes.
|
|
|
|
Args:
|
|
agents (List[Agent]): A list of agents used for processing the documentation.
|
|
max_loops (int, optional): The maximum number of loops to run. Defaults to 4.
|
|
docs_module_name (str, optional): The name of the module where the documentation will be saved. Defaults to "swarms.structs".
|
|
docs_directory (str, optional): The directory where the documentation will be saved. Defaults to "docs/swarms/tokenizers".
|
|
|
|
Attributes:
|
|
agents (List[Agent]): A list of agents used for processing the documentation.
|
|
max_loops (int): The maximum number of loops to run.
|
|
docs_module_name (str): The name of the module where the documentation will be saved.
|
|
docs_directory (str): The directory where the documentation will be saved.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
agents: List[Agent],
|
|
max_loops: int = 4,
|
|
docs_module_name: str = "swarms.utils",
|
|
docs_directory: str = "docs/swarms/utils",
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.agents = agents
|
|
self.max_loops = max_loops
|
|
self.docs_module_name = docs_module_name
|
|
self.docs_directory = docs_directory
|
|
|
|
# Initialize agent name logging
|
|
logger.info(
|
|
"Agents used for documentation:"
|
|
f" {', '.join([agent.name for agent in agents])}"
|
|
)
|
|
|
|
# Create the directory if it doesn't exist
|
|
dir_path = self.docs_directory
|
|
os.makedirs(dir_path, exist_ok=True)
|
|
logger.info(f"Documentation directory created at {dir_path}.")
|
|
|
|
def process_documentation(self, item):
|
|
"""
|
|
Process the documentation for a given class using OpenAI model and save it in a Markdown file.
|
|
|
|
Args:
|
|
item: The class or function for which the documentation needs to be processed.
|
|
"""
|
|
try:
|
|
doc = inspect.getdoc(item)
|
|
source = inspect.getsource(item)
|
|
is_class = inspect.isclass(item)
|
|
item_type = "Class Name" if is_class else "Name"
|
|
input_content = (
|
|
f"{item_type}:"
|
|
f" {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
|
f" Code:\n{source}"
|
|
)
|
|
|
|
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
|
|
for agent in self.agents:
|
|
processed_content = agent(
|
|
DOCUMENTATION_WRITER_SOP(
|
|
input_content, self.docs_module_name
|
|
)
|
|
)
|
|
|
|
doc_content = f"{processed_content}\n"
|
|
|
|
# Create the directory if it doesn't exist
|
|
dir_path = self.docs_directory
|
|
os.makedirs(dir_path, exist_ok=True)
|
|
|
|
# Write the processed documentation to a Markdown file
|
|
file_path = os.path.join(
|
|
dir_path, f"{item.__name__.lower()}.md"
|
|
)
|
|
with open(file_path, "w") as file:
|
|
file.write(doc_content)
|
|
|
|
logger.info(f"Documentation generated for {item.__name__}.")
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error processing documentation for {item.__name__}."
|
|
)
|
|
logger.error(e)
|
|
|
|
def run(self, python_items: List[Callable]):
|
|
"""
|
|
Run the documentation process for a list of Python items.
|
|
|
|
Args:
|
|
python_items (List[Callable]): A list of Python classes or functions for which the documentation needs to be generated.
|
|
"""
|
|
try:
|
|
threads = []
|
|
for item in python_items:
|
|
thread = threading.Thread(
|
|
target=self.process_documentation, args=(item,)
|
|
)
|
|
threads.append(thread)
|
|
thread.start()
|
|
|
|
# Wait for all threads to complete
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
logger.info(
|
|
"Documentation generated in 'swarms.structs'" " directory."
|
|
)
|
|
except Exception as e:
|
|
logger.error("Error running documentation process.")
|
|
logger.error(e)
|
|
|
|
def run_concurrently(self, python_items: List[Callable]):
|
|
try:
|
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
executor.map(self.process_documentation, python_items)
|
|
|
|
logger.info(
|
|
"Documentation generated in 'swarms.structs'" " directory."
|
|
)
|
|
except Exception as e:
|
|
logger.error("Error running documentation process.")
|
|
logger.error(e)
|
|
|
|
|
|
# Example usage
|
|
# Initialize the agents
|
|
agent = Agent(
|
|
llm=OpenAIChat(max_tokens=3000),
|
|
agent_name="Documentation Agent",
|
|
system_prompt=(
|
|
"You write documentation for Python items functions and"
|
|
" classes, return in markdown"
|
|
),
|
|
max_loops=1,
|
|
)
|
|
|
|
# Initialize the documentation swarm
|
|
doc_swarm = PythonDocumentationSwarm(
|
|
agents=[agent],
|
|
max_loops=1,
|
|
docs_module_name="swarms.structs",
|
|
docs_directory="docs/swarms/tokenizers",
|
|
)
|
|
|
|
# Run the documentation process
|
|
doc_swarm.run(
|
|
[
|
|
load_json,
|
|
sanitize_file_path,
|
|
zip_workspace,
|
|
create_file_in_folder,
|
|
zip_folders,
|
|
]
|
|
)
|