You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/example.py

70 lines
1.9 KiB

import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
from swarms.structs.orchestrator import Orchestrator
from swarms.structs.notification_manager import UpdateMetadata
from datetime import datetime
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
user_name="swarms_corp",
retry_attempts=1,
streaming_on=True,
context_length=200000,
return_step_meta=True,
output_type="json", # "json", "dict", "csv" OR "string" soon "yaml" and
auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task
artifacts_on=True,
artifacts_output_path="roth_ira_report",
artifacts_file_extension=".txt",
max_tokens=8000,
return_history=True,
)
# Create orchestrator
orchestrator = Orchestrator()
# Register agents
orchestrator.register_agent(agent)
# Example vector DB update
update = UpdateMetadata(
topic="stock_market",
importance=0.8,
timestamp=datetime.now(),
affected_areas=["finance", "trading"]
)
# Handle update - only Financial-Analysis-Agent will be notified
orchestrator.handle_vector_db_update(update)
agent.run(
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria. Create a report on this question.",
all_cores=True,
)