You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
3.5 KiB
134 lines
3.5 KiB
import inspect
|
|
import os
|
|
import threading
|
|
|
|
from dotenv import load_dotenv
|
|
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
|
|
from swarms import OpenAIChat
|
|
from swarms.structs.agent import Agent
|
|
from swarms.structs.autoscaler import AutoScaler
|
|
from swarms.structs.base import BaseStructure
|
|
from swarms.structs.base_swarm import AbstractSwarm
|
|
from swarms.structs.base_workflow import BaseWorkflow
|
|
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
|
|
from swarms.structs.conversation import Conversation
|
|
from swarms.structs.groupchat import GroupChat, GroupChatManager
|
|
from swarms.structs.model_parallizer import ModelParallelizer
|
|
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
|
|
from swarms.structs.nonlinear_workflow import NonlinearWorkflow
|
|
from swarms.structs.recursive_workflow import RecursiveWorkflow
|
|
from swarms.structs.schemas import (
|
|
Artifact,
|
|
ArtifactUpload,
|
|
StepInput,
|
|
TaskInput,
|
|
)
|
|
from swarms.structs.sequential_workflow import SequentialWorkflow
|
|
from swarms.structs.swarm_net import SwarmNetwork
|
|
from swarms.structs.utils import (
|
|
distribute_tasks,
|
|
extract_key_from_json,
|
|
extract_tokens_from_text,
|
|
find_agent_by_id,
|
|
find_token_in_text,
|
|
parse_tasks,
|
|
)
|
|
|
|
|
|
load_dotenv()
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
model = OpenAIChat(
|
|
model_name="gpt-4-1106-preview",
|
|
openai_api_key=api_key,
|
|
max_tokens=4000,
|
|
)
|
|
|
|
|
|
def process_documentation(
|
|
item,
|
|
module: str = "swarms.structs",
|
|
docs_folder_path: str = "docs/swarms/structs",
|
|
):
|
|
"""
|
|
Process the documentation for a given class or function using OpenAI model and save it in a Python file.
|
|
"""
|
|
doc = inspect.getdoc(item)
|
|
source = inspect.getsource(item)
|
|
is_class = inspect.isclass(item)
|
|
item_type = "Class Name" if is_class else "Name"
|
|
input_content = (
|
|
f"{item_type}:"
|
|
f" {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
|
|
f" Code:\n{source}"
|
|
)
|
|
|
|
# Process with OpenAI model
|
|
processed_content = model(
|
|
DOCUMENTATION_WRITER_SOP(input_content, module)
|
|
)
|
|
|
|
doc_content = f"# {item.__name__}\n\n{processed_content}\n"
|
|
|
|
# Create the directory if it doesn't exist
|
|
dir_path = docs_folder_path
|
|
os.makedirs(dir_path, exist_ok=True)
|
|
|
|
# Write the processed documentation to a Python file
|
|
file_path = os.path.join(dir_path, f"{item.__name__.lower()}.md")
|
|
with open(file_path, "w") as file:
|
|
file.write(doc_content)
|
|
|
|
print(
|
|
f"Processed documentation for {item.__name__}. at {file_path}"
|
|
)
|
|
|
|
|
|
def main(module: str = "docs/swarms/structs"):
|
|
items = [
|
|
Agent,
|
|
SequentialWorkflow,
|
|
AutoScaler,
|
|
Conversation,
|
|
TaskInput,
|
|
Artifact,
|
|
ArtifactUpload,
|
|
StepInput,
|
|
SwarmNetwork,
|
|
ModelParallelizer,
|
|
MultiAgentCollaboration,
|
|
AbstractSwarm,
|
|
GroupChat,
|
|
GroupChatManager,
|
|
parse_tasks,
|
|
find_agent_by_id,
|
|
distribute_tasks,
|
|
find_token_in_text,
|
|
extract_key_from_json,
|
|
extract_tokens_from_text,
|
|
ConcurrentWorkflow,
|
|
RecursiveWorkflow,
|
|
NonlinearWorkflow,
|
|
BaseWorkflow,
|
|
BaseStructure,
|
|
]
|
|
|
|
threads = []
|
|
for item in items:
|
|
thread = threading.Thread(
|
|
target=process_documentation, args=(item,)
|
|
)
|
|
threads.append(thread)
|
|
thread.start()
|
|
|
|
# Wait for all threads to complete
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
print(f"Documentation generated in {module} directory.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|