You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/csv_to_agent.py

235 lines
9.0 KiB

from typing import List, Dict, Optional, TypedDict, Literal, Union, Any
from dataclasses import dataclass
import csv
import os
from pathlib import Path
import logging
from enum import Enum
from swarms import Agent
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ModelName(str, Enum):
"""Valid model names for swarms agents"""
GPT4O = "gpt-4o"
GPT4O_MINI = "gpt-4o-mini"
GPT4 = "gpt-4"
GPT35_TURBO = "gpt-3.5-turbo"
CLAUDE = "claude-v1"
CLAUDE2 = "claude-2"
@classmethod
def get_model_names(cls) -> List[str]:
"""Get list of valid model names"""
return [model.value for model in cls]
@classmethod
def is_valid_model(cls, model_name: str) -> bool:
"""Check if model name is valid"""
return model_name in cls.get_model_names()
class AgentConfigDict(TypedDict):
"""TypedDict for agent configuration"""
agent_name: str
system_prompt: str
model_name: str # Using str instead of ModelName for flexibility
max_loops: int
autosave: bool
dashboard: bool
verbose: bool
dynamic_temperature: bool
saved_state_path: str
user_name: str
retry_attempts: int
context_length: int
return_step_meta: bool
output_type: str
streaming: bool
@dataclass
class AgentValidationError(Exception):
"""Custom exception for agent validation errors"""
message: str
field: str
value: Any
def __str__(self) -> str:
return f"Validation error in field '{self.field}': {self.message}. Got value: {self.value}"
class AgentValidator:
"""Validates agent configuration data"""
@staticmethod
def validate_config(config: Dict[str, Any]) -> AgentConfigDict:
"""Validate and convert agent configuration"""
try:
# Validate model name
model_name = str(config['model_name'])
if not ModelName.is_valid_model(model_name):
valid_models = ModelName.get_model_names()
raise AgentValidationError(
f"Invalid model name. Must be one of: {', '.join(valid_models)}",
"model_name",
model_name
)
# Convert types with error handling
validated_config: AgentConfigDict = {
'agent_name': str(config.get('agent_name', '')),
'system_prompt': str(config.get('system_prompt', '')),
'model_name': model_name,
'max_loops': int(config.get('max_loops', 1)),
'autosave': bool(str(config.get('autosave', True)).lower() == 'true'),
'dashboard': bool(str(config.get('dashboard', False)).lower() == 'true'),
'verbose': bool(str(config.get('verbose', True)).lower() == 'true'),
'dynamic_temperature': bool(str(config.get('dynamic_temperature', True)).lower() == 'true'),
'saved_state_path': str(config.get('saved_state_path', '')),
'user_name': str(config.get('user_name', 'default_user')),
'retry_attempts': int(config.get('retry_attempts', 3)),
'context_length': int(config.get('context_length', 200000)),
'return_step_meta': bool(str(config.get('return_step_meta', False)).lower() == 'true'),
'output_type': str(config.get('output_type', 'string')),
'streaming': bool(str(config.get('streaming', False)).lower() == 'true')
}
return validated_config
except (ValueError, KeyError) as e:
raise AgentValidationError(
str(e),
str(e.__class__.__name__),
str(config)
)
@dataclass
class AgentCSV:
"""Class to manage agents through CSV with type safety"""
csv_path: Path
def __post_init__(self) -> None:
"""Convert string path to Path object if necessary"""
if isinstance(self.csv_path, str):
self.csv_path = Path(self.csv_path)
@property
def headers(self) -> List[str]:
"""CSV headers for agent configuration"""
return [
"agent_name", "system_prompt", "model_name", "max_loops",
"autosave", "dashboard", "verbose", "dynamic_temperature",
"saved_state_path", "user_name", "retry_attempts", "context_length",
"return_step_meta", "output_type", "streaming"
]
def create_agent_csv(self, agents: List[Dict[str, Any]]) -> None:
"""Create a CSV file with validated agent configurations"""
validated_agents = []
for agent in agents:
try:
validated_config = AgentValidator.validate_config(agent)
validated_agents.append(validated_config)
except AgentValidationError as e:
logger.error(f"Validation error for agent {agent.get('agent_name', 'unknown')}: {e}")
raise
with open(self.csv_path, 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=self.headers)
writer.writeheader()
writer.writerows(validated_agents)
logger.info(f"Created CSV with {len(validated_agents)} agents at {self.csv_path}")
def load_agents(self) -> List[Agent]:
"""Load and create agents from CSV with validation"""
if not self.csv_path.exists():
raise FileNotFoundError(f"CSV file not found at {self.csv_path}")
agents: List[Agent] = []
with open(self.csv_path, 'r') as f:
reader = csv.DictReader(f)
for row in reader:
try:
validated_config = AgentValidator.validate_config(row)
agent = Agent(
agent_name=validated_config['agent_name'],
system_prompt=validated_config['system_prompt'],
model_name=validated_config['model_name'],
max_loops=validated_config['max_loops'],
autosave=validated_config['autosave'],
dashboard=validated_config['dashboard'],
verbose=validated_config['verbose'],
dynamic_temperature_enabled=validated_config['dynamic_temperature'],
saved_state_path=validated_config['saved_state_path'],
user_name=validated_config['user_name'],
retry_attempts=validated_config['retry_attempts'],
context_length=validated_config['context_length'],
return_step_meta=validated_config['return_step_meta'],
output_type=validated_config['output_type'],
streaming_on=validated_config['streaming']
)
agents.append(agent)
except AgentValidationError as e:
logger.error(f"Skipping invalid agent configuration: {e}")
continue
logger.info(f"Loaded {len(agents)} agents from {self.csv_path}")
return agents
def add_agent(self, agent_config: Dict[str, Any]) -> None:
"""Add a new validated agent configuration to CSV"""
validated_config = AgentValidator.validate_config(agent_config)
with open(self.csv_path, 'a', newline='') as f:
writer = csv.DictWriter(f, fieldnames=self.headers)
writer.writerow(validated_config)
logger.info(f"Added new agent {validated_config['agent_name']} to {self.csv_path}")
# Example usage
if __name__ == "__main__":
# Example agent configurations
agent_configs = [
{
"agent_name": "Financial-Analysis-Agent",
"system_prompt": "You are a financial expert...",
"model_name": "gpt-4o-mini", # Updated to correct model name
"max_loops": 1,
"autosave": True,
"dashboard": False,
"verbose": True,
"dynamic_temperature": True,
"saved_state_path": "finance_agent.json",
"user_name": "swarms_corp",
"retry_attempts": 3,
"context_length": 200000,
"return_step_meta": False,
"output_type": "string",
"streaming": False
}
]
try:
# Initialize CSV manager
csv_manager = AgentCSV(Path("agents.csv"))
# Create CSV with initial agents
csv_manager.create_agent_csv(agent_configs)
# Load agents from CSV
agents = csv_manager.load_agents()
# Use an agent
if agents:
financial_agent = agents[0]
response = financial_agent.run(
"How can I establish a ROTH IRA to buy stocks and get a tax break?"
)
print(response)
except AgentValidationError as e:
logger.error(f"Validation error: {e}")
except Exception as e:
logger.error(f"Unexpected error: {e}")