You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2080 lines
72 KiB
2080 lines
72 KiB
import asyncio
|
|
import json
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
import threading
|
|
import time
|
|
import uuid
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
import toml
|
|
import yaml
|
|
from loguru import logger
|
|
from pydantic import BaseModel
|
|
from swarms_memory import BaseVectorDatabase
|
|
from termcolor import colored
|
|
|
|
from swarm_models.tiktoken_wrapper import TikTokenizer
|
|
from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3
|
|
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
|
|
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
|
|
)
|
|
from swarms.prompts.tools import tool_sop_prompt
|
|
from swarms.schemas.agent_step_schemas import ManySteps, Step
|
|
from swarms.schemas.base_schemas import (
|
|
AgentChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatMessageResponse,
|
|
)
|
|
from swarms.structs.concat import concat_strings
|
|
from swarms.structs.conversation import Conversation
|
|
from swarms.structs.yaml_model import YamlModel
|
|
from swarms.tools.base_tool import BaseTool
|
|
from swarms.tools.func_calling_utils import (
|
|
prepare_output_for_output_model,
|
|
)
|
|
from swarms.tools.prebuilt.code_executor import CodeExecutor
|
|
from swarms.tools.tool_parse_exec import parse_and_execute_json
|
|
from swarms.utils.data_to_text import data_to_text
|
|
from swarms.utils.file_processing import create_file_in_folder
|
|
from swarms.utils.parse_code import extract_code_from_markdown
|
|
from swarms.utils.pdf_to_text import pdf_to_text
|
|
from swarms.utils.run_on_cpu import run_on_cpu
|
|
from clusterops import (
|
|
execute_on_gpu,
|
|
execute_with_cpu_cores,
|
|
)
|
|
|
|
|
|
# Utils
|
|
# Custom stopping condition
|
|
def stop_when_repeats(response: str) -> bool:
|
|
# Stop if the word stop appears in the response
|
|
return "stop" in response.lower()
|
|
|
|
|
|
# Parse done token
|
|
def parse_done_token(response: str) -> bool:
|
|
"""Parse the response to see if the done token is present"""
|
|
return "<DONE>" in response
|
|
|
|
|
|
# Agent ID generator
|
|
def agent_id():
|
|
"""Generate an agent id"""
|
|
return uuid.uuid4().hex
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
# Agent output types
|
|
# agent_output_type = Union[BaseModel, dict, str]
|
|
agent_output_type = Literal[
|
|
"string", "str", "list", "json", "dict", "yaml"
|
|
]
|
|
ToolUsageType = Union[BaseModel, Dict[str, Any]]
|
|
|
|
|
|
# [FEAT][AGENT]
|
|
class Agent:
|
|
"""
|
|
Agent is the backbone to connect LLMs with tools and long term memory. Agent also provides the ability to
|
|
ingest any type of docs like PDFs, Txts, Markdown, Json, and etc for the agent. Here is a list of features.
|
|
|
|
Args:
|
|
llm (Any): The language model to use
|
|
template (str): The template to use
|
|
max_loops (int): The maximum number of loops to run
|
|
stopping_condition (Callable): The stopping condition to use
|
|
loop_interval (int): The loop interval
|
|
retry_attempts (int): The number of retry attempts
|
|
retry_interval (int): The retry interval
|
|
return_history (bool): Return the history
|
|
stopping_token (str): The stopping token
|
|
dynamic_loops (bool): Enable dynamic loops
|
|
interactive (bool): Enable interactive mode
|
|
dashboard (bool): Enable dashboard
|
|
agent_name (str): The name of the agent
|
|
agent_description (str): The description of the agent
|
|
system_prompt (str): The system prompt
|
|
tools (List[BaseTool]): The tools to use
|
|
dynamic_temperature_enabled (bool): Enable dynamic temperature
|
|
sop (str): The standard operating procedure
|
|
sop_list (List[str]): The standard operating procedure list
|
|
saved_state_path (str): The path to the saved state
|
|
autosave (bool): Autosave the state
|
|
context_length (int): The context length
|
|
user_name (str): The user name
|
|
self_healing_enabled (bool): Enable self healing
|
|
code_interpreter (bool): Enable code interpreter
|
|
multi_modal (bool): Enable multimodal
|
|
pdf_path (str): The path to the pdf
|
|
list_of_pdf (str): The list of pdf
|
|
tokenizer (Any): The tokenizer
|
|
memory (BaseVectorDatabase): The memory
|
|
preset_stopping_token (bool): Enable preset stopping token
|
|
traceback (Any): The traceback
|
|
traceback_handlers (Any): The traceback handlers
|
|
streaming_on (bool): Enable streaming
|
|
|
|
Methods:
|
|
run: Run the agent
|
|
run_concurrent: Run the agent concurrently
|
|
bulk_run: Run the agent in bulk
|
|
save: Save the agent
|
|
load: Load the agent
|
|
validate_response: Validate the response
|
|
print_history_and_memory: Print the history and memory
|
|
step: Step through the agent
|
|
graceful_shutdown: Gracefully shutdown the agent
|
|
run_with_timeout: Run the agent with a timeout
|
|
analyze_feedback: Analyze the feedback
|
|
undo_last: Undo the last response
|
|
add_response_filter: Add a response filter
|
|
apply_response_filters: Apply the response filters
|
|
filtered_run: Run the agent with filtered responses
|
|
interactive_run: Run the agent in interactive mode
|
|
streamed_generation: Stream the generation of the response
|
|
save_state: Save the state
|
|
load_state: Load the state
|
|
truncate_history: Truncate the history
|
|
add_task_to_memory: Add the task to the memory
|
|
add_message_to_memory: Add the message to the memory
|
|
add_message_to_memory_and_truncate: Add the message to the memory and truncate
|
|
print_dashboard: Print the dashboard
|
|
loop_count_print: Print the loop count
|
|
streaming: Stream the content
|
|
_history: Generate the history
|
|
_dynamic_prompt_setup: Setup the dynamic prompt
|
|
run_async: Run the agent asynchronously
|
|
run_async_concurrent: Run the agent asynchronously and concurrently
|
|
run_async_concurrent: Run the agent asynchronously and concurrently
|
|
construct_dynamic_prompt: Construct the dynamic prompt
|
|
construct_dynamic_prompt: Construct the dynamic prompt
|
|
|
|
|
|
Examples:
|
|
>>> from swarm_models import OpenAIChat
|
|
>>> from swarms.structs import Agent
|
|
>>> llm = OpenAIChat()
|
|
>>> agent = Agent(llm=llm, max_loops=1)
|
|
>>> response = agent.run("Generate a report on the financials.")
|
|
>>> print(response)
|
|
>>> # Generate a report on the financials.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
agent_id: Optional[str] = agent_id(),
|
|
id: Optional[str] = agent_id(),
|
|
llm: Optional[Any] = None,
|
|
template: Optional[str] = None,
|
|
max_loops: Optional[int] = 1,
|
|
stopping_condition: Optional[Callable[[str], bool]] = None,
|
|
loop_interval: Optional[int] = 0,
|
|
retry_attempts: Optional[int] = 3,
|
|
retry_interval: Optional[int] = 1,
|
|
return_history: Optional[bool] = False,
|
|
stopping_token: Optional[str] = None,
|
|
dynamic_loops: Optional[bool] = False,
|
|
interactive: Optional[bool] = False,
|
|
dashboard: Optional[bool] = False,
|
|
agent_name: Optional[str] = "swarm-worker-01",
|
|
agent_description: Optional[str] = None,
|
|
system_prompt: Optional[str] = AGENT_SYSTEM_PROMPT_3,
|
|
# TODO: Change to callable, then parse the callable to a string
|
|
tools: List[Callable] = None,
|
|
dynamic_temperature_enabled: Optional[bool] = False,
|
|
sop: Optional[str] = None,
|
|
sop_list: Optional[List[str]] = None,
|
|
saved_state_path: Optional[str] = None,
|
|
autosave: Optional[bool] = False,
|
|
context_length: Optional[int] = 8192,
|
|
user_name: Optional[str] = "Human:",
|
|
self_healing_enabled: Optional[bool] = False,
|
|
code_interpreter: Optional[bool] = False,
|
|
multi_modal: Optional[bool] = None,
|
|
pdf_path: Optional[str] = None,
|
|
list_of_pdf: Optional[str] = None,
|
|
tokenizer: Optional[Any] = None,
|
|
long_term_memory: Optional[BaseVectorDatabase] = None,
|
|
preset_stopping_token: Optional[bool] = False,
|
|
traceback: Optional[Any] = None,
|
|
traceback_handlers: Optional[Any] = None,
|
|
streaming_on: Optional[bool] = False,
|
|
docs: List[str] = None,
|
|
docs_folder: Optional[str] = None,
|
|
verbose: Optional[bool] = False,
|
|
parser: Optional[Callable] = None,
|
|
best_of_n: Optional[int] = None,
|
|
callback: Optional[Callable] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
callbacks: Optional[List[Callable]] = None,
|
|
logger_handler: Optional[Any] = sys.stderr,
|
|
search_algorithm: Optional[Callable] = None,
|
|
logs_to_filename: Optional[str] = None,
|
|
evaluator: Optional[Callable] = None, # Custom LLM or agent
|
|
stopping_func: Optional[Callable] = None,
|
|
custom_loop_condition: Optional[Callable] = None,
|
|
sentiment_threshold: Optional[
|
|
float
|
|
] = None, # Evaluate on output using an external model
|
|
custom_exit_command: Optional[str] = "exit",
|
|
sentiment_analyzer: Optional[Callable] = None,
|
|
limit_tokens_from_string: Optional[Callable] = None,
|
|
# [Tools]
|
|
custom_tools_prompt: Optional[Callable] = None,
|
|
tool_schema: ToolUsageType = None,
|
|
output_type: agent_output_type = "str",
|
|
function_calling_type: str = "json",
|
|
output_cleaner: Optional[Callable] = None,
|
|
function_calling_format_type: Optional[str] = "OpenAI",
|
|
list_base_models: Optional[List[BaseModel]] = None,
|
|
metadata_output_type: str = "json",
|
|
state_save_file_type: str = "json",
|
|
chain_of_thoughts: bool = False,
|
|
algorithm_of_thoughts: bool = False,
|
|
tree_of_thoughts: bool = False,
|
|
tool_choice: str = "auto",
|
|
execute_tool: bool = False,
|
|
rules: str = None, # type: ignore
|
|
planning: Optional[str] = False,
|
|
planning_prompt: Optional[str] = None,
|
|
device: str = None,
|
|
custom_planning_prompt: str = None,
|
|
memory_chunk_size: int = 2000,
|
|
agent_ops_on: bool = False,
|
|
log_directory: str = None,
|
|
tool_system_prompt: str = tool_sop_prompt(),
|
|
max_tokens: int = 4096,
|
|
top_p: float = 0.9,
|
|
top_k: int = None,
|
|
frequency_penalty: float = 0.0,
|
|
presence_penalty: float = 0.0,
|
|
temperature: float = 0.1,
|
|
workspace_dir: str = "agent_workspace",
|
|
timeout: Optional[int] = None,
|
|
# short_memory: Optional[str] = None,
|
|
created_at: float = time.time(),
|
|
return_step_meta: Optional[bool] = False,
|
|
tags: Optional[List[str]] = None,
|
|
use_cases: Optional[List[Dict[str, str]]] = None,
|
|
step_pool: List[Step] = [],
|
|
print_every_step: Optional[bool] = False,
|
|
time_created: Optional[float] = time.strftime(
|
|
"%Y-%m-%d %H:%M:%S", time.localtime()
|
|
),
|
|
agent_output: ManySteps = None,
|
|
executor_workers: int = os.cpu_count(),
|
|
data_memory: Optional[Callable] = None,
|
|
load_yaml_path: str = None,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
# super().__init__(*args, **kwargs)
|
|
self.agent_id = agent_id
|
|
self.id = id
|
|
self.llm = llm
|
|
self.template = template
|
|
self.max_loops = max_loops
|
|
self.stopping_condition = stopping_condition
|
|
self.loop_interval = loop_interval
|
|
self.retry_attempts = retry_attempts
|
|
self.retry_interval = retry_interval
|
|
self.task = None
|
|
self.stopping_token = stopping_token
|
|
self.interactive = interactive
|
|
self.dashboard = dashboard
|
|
self.return_history = return_history
|
|
self.dynamic_temperature_enabled = dynamic_temperature_enabled
|
|
self.dynamic_loops = dynamic_loops
|
|
self.user_name = user_name
|
|
self.context_length = context_length
|
|
self.sop = sop
|
|
self.sop_list = sop_list
|
|
self.tools = tools
|
|
self.system_prompt = system_prompt
|
|
self.agent_name = agent_name
|
|
self.agent_description = agent_description
|
|
self.saved_state_path = f"{self.agent_name}_state.json"
|
|
self.autosave = autosave
|
|
self.response_filters = []
|
|
self.self_healing_enabled = self_healing_enabled
|
|
self.code_interpreter = code_interpreter
|
|
self.multi_modal = multi_modal
|
|
self.pdf_path = pdf_path
|
|
self.list_of_pdf = list_of_pdf
|
|
self.tokenizer = tokenizer
|
|
self.long_term_memory = long_term_memory
|
|
self.preset_stopping_token = preset_stopping_token
|
|
self.traceback = traceback
|
|
self.traceback_handlers = traceback_handlers
|
|
self.streaming_on = streaming_on
|
|
self.docs = docs
|
|
self.docs_folder = docs_folder
|
|
self.verbose = verbose
|
|
self.parser = parser
|
|
self.best_of_n = best_of_n
|
|
self.callback = callback
|
|
self.metadata = metadata
|
|
self.callbacks = callbacks
|
|
self.logger_handler = logger_handler
|
|
self.search_algorithm = search_algorithm
|
|
self.logs_to_filename = logs_to_filename
|
|
self.evaluator = evaluator
|
|
self.stopping_func = stopping_func
|
|
self.custom_loop_condition = custom_loop_condition
|
|
self.sentiment_threshold = sentiment_threshold
|
|
self.custom_exit_command = custom_exit_command
|
|
self.sentiment_analyzer = sentiment_analyzer
|
|
self.limit_tokens_from_string = limit_tokens_from_string
|
|
self.tool_schema = tool_schema
|
|
self.output_type = output_type
|
|
self.function_calling_type = function_calling_type
|
|
self.output_cleaner = output_cleaner
|
|
self.function_calling_format_type = (
|
|
function_calling_format_type
|
|
)
|
|
self.list_base_models = list_base_models
|
|
self.metadata_output_type = metadata_output_type
|
|
self.state_save_file_type = state_save_file_type
|
|
self.chain_of_thoughts = chain_of_thoughts
|
|
self.algorithm_of_thoughts = algorithm_of_thoughts
|
|
self.tree_of_thoughts = tree_of_thoughts
|
|
self.tool_choice = tool_choice
|
|
self.execute_tool = execute_tool
|
|
self.planning = planning
|
|
self.planning_prompt = planning_prompt
|
|
self.device = device
|
|
self.custom_planning_prompt = custom_planning_prompt
|
|
self.rules = rules
|
|
self.custom_tools_prompt = custom_tools_prompt
|
|
self.memory_chunk_size = memory_chunk_size
|
|
self.agent_ops_on = agent_ops_on
|
|
self.log_directory = log_directory
|
|
self.tool_system_prompt = tool_system_prompt
|
|
self.max_tokens = max_tokens
|
|
self.top_p = top_p
|
|
self.top_k = top_k
|
|
self.frequency_penalty = frequency_penalty
|
|
self.presence_penalty = presence_penalty
|
|
self.temperature = temperature
|
|
self.workspace_dir = workspace_dir
|
|
self.timeout = timeout
|
|
self.created_at = created_at
|
|
self.return_step_meta = return_step_meta
|
|
self.tags = tags
|
|
self.use_cases = use_cases
|
|
self.name = agent_name
|
|
self.description = agent_description
|
|
self.agent_output = agent_output
|
|
self.step_pool = step_pool
|
|
self.print_every_step = print_every_step
|
|
self.time_created = time_created
|
|
self.data_memory = data_memory
|
|
self.load_yaml_path = load_yaml_path
|
|
self.tokenizer = TikTokenizer()
|
|
|
|
# Initialize the feedback
|
|
self.feedback = []
|
|
self.step_pool = []
|
|
|
|
# Initialize the executor
|
|
self.executor = ThreadPoolExecutor(
|
|
max_workers=executor_workers
|
|
)
|
|
|
|
# Initialize the tool struct
|
|
if (
|
|
exists(tools)
|
|
or exists(list_base_models)
|
|
or exists(tool_schema)
|
|
):
|
|
|
|
self.tool_struct = BaseTool(
|
|
tools=tools,
|
|
base_models=list_base_models,
|
|
tool_system_prompt=tool_system_prompt,
|
|
)
|
|
|
|
# The max_loops will be set dynamically if the dynamic_loop
|
|
if self.dynamic_loops is True:
|
|
logger.info("Dynamic loops enabled")
|
|
self.max_loops = "auto"
|
|
|
|
# If multimodal = yes then set the sop to the multimodal sop
|
|
if self.multi_modal is True:
|
|
self.sop = MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1
|
|
|
|
# If the preset stopping token is enabled then set the stopping token to the preset stopping token
|
|
if preset_stopping_token is not None:
|
|
self.stopping_token = "<DONE>"
|
|
|
|
# If the system prompt is provided then set the system prompt
|
|
# Initialize the short term memory
|
|
self.short_memory = Conversation(
|
|
system_prompt=system_prompt,
|
|
time_enabled=True,
|
|
user=user_name,
|
|
rules=rules,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
# # Check the parameters
|
|
# # Telemetry Processor to log agent data
|
|
# threading.Thread(target=self.agent_initialization()).start
|
|
|
|
# If the docs exist then ingest the docs
|
|
if exists(self.docs):
|
|
threading.Thread(
|
|
target=self.ingest_docs, args=(self.docs)
|
|
).start()
|
|
|
|
# If docs folder exists then get the docs from docs folder
|
|
if exists(self.docs_folder):
|
|
threading.Thread(
|
|
target=self.get_docs_from_doc_folders
|
|
).start()
|
|
|
|
if tools is not None:
|
|
logger.info(
|
|
"Tools provided make sure the functions have documentation ++ type hints, otherwise tool execution won't be reliable."
|
|
)
|
|
# Add the tool prompt to the memory
|
|
self.short_memory.add(
|
|
role="system", content=tool_system_prompt
|
|
)
|
|
|
|
# Log the tools
|
|
logger.info(
|
|
f"Tools provided: Accessing {len(tools)} tools"
|
|
)
|
|
|
|
# Transform the tools into an openai schema
|
|
# self.convert_tool_into_openai_schema()
|
|
|
|
# Transform the tools into an openai schema
|
|
tool_dict = (
|
|
self.tool_struct.convert_tool_into_openai_schema()
|
|
)
|
|
self.short_memory.add(role="system", content=tool_dict)
|
|
|
|
# Now create a function calling map for every tools
|
|
self.function_map = {
|
|
tool.__name__: tool for tool in tools
|
|
}
|
|
|
|
# Set the logger handler
|
|
if exists(logger_handler):
|
|
log_file_path = os.path.join(
|
|
self.workspace_dir, f"{self.agent_name}.log"
|
|
)
|
|
logger.add(
|
|
log_file_path,
|
|
level="INFO",
|
|
colorize=True,
|
|
backtrace=True,
|
|
diagnose=True,
|
|
)
|
|
|
|
# If the tool schema exists or a list of base models exists then convert the tool schema into an openai schema
|
|
if exists(tool_schema) or exists(list_base_models):
|
|
threading.Thread(
|
|
target=self.handle_tool_schema_ops()
|
|
).start()
|
|
|
|
# If the sop or sop_list exists then handle the sop ops
|
|
if exists(self.sop) or exists(self.sop_list):
|
|
threading.Thread(target=self.handle_sop_ops()).start()
|
|
|
|
# If agent_ops is on => activate agentops
|
|
if agent_ops_on is True:
|
|
threading.Thread(target=self.activate_agentops()).start()
|
|
|
|
# Many steps
|
|
self.agent_output = ManySteps(
|
|
agent_id=agent_id,
|
|
agent_name=agent_name,
|
|
# run_id=run_id,
|
|
task="",
|
|
max_loops=self.max_loops,
|
|
steps=self.step_pool,
|
|
full_history=self.short_memory.return_history_as_string(),
|
|
total_tokens=self.tokenizer.count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
),
|
|
stopping_token=self.stopping_token,
|
|
interactive=self.interactive,
|
|
dynamic_temperature_enabled=self.dynamic_temperature_enabled,
|
|
)
|
|
|
|
# Telemetry Processor to log agent data
|
|
threading.Thread(target=self.log_agent_data).start()
|
|
|
|
def set_system_prompt(self, system_prompt: str):
|
|
"""Set the system prompt"""
|
|
self.system_prompt = system_prompt
|
|
|
|
def provide_feedback(self, feedback: str) -> None:
|
|
"""Allow users to provide feedback on the responses."""
|
|
self.feedback.append(feedback)
|
|
logging.info(f"Feedback received: {feedback}")
|
|
|
|
def agent_initialization(self):
|
|
try:
|
|
logger.info(
|
|
f"Initializing Autonomous Agent {self.agent_name}..."
|
|
)
|
|
self.check_parameters()
|
|
logger.info(
|
|
f"{self.agent_name} Initialized Successfully."
|
|
)
|
|
logger.info(
|
|
f"Autonomous Agent {self.agent_name} Activated, all systems operational. Executing task..."
|
|
)
|
|
|
|
if self.dashboard is True:
|
|
self.print_dashboard()
|
|
|
|
except ValueError as e:
|
|
logger.info(f"Error initializing agent: {e}")
|
|
raise e
|
|
|
|
def _check_stopping_condition(self, response: str) -> bool:
|
|
"""Check if the stopping condition is met."""
|
|
try:
|
|
if self.stopping_condition:
|
|
return self.stopping_condition(response)
|
|
return False
|
|
except Exception as error:
|
|
print(
|
|
colored(
|
|
f"Error checking stopping condition: {error}",
|
|
"red",
|
|
)
|
|
)
|
|
|
|
def dynamic_temperature(self):
|
|
"""
|
|
1. Check the self.llm object for the temperature
|
|
2. If the temperature is not present, then use the default temperature
|
|
3. If the temperature is present, then dynamically change the temperature
|
|
4. for every loop you can randomly change the temperature on a scale from 0.0 to 1.0
|
|
"""
|
|
try:
|
|
if hasattr(self.llm, "temperature"):
|
|
# Randomly change the temperature attribute of self.llm object
|
|
self.llm.temperature = random.uniform(0.0, 1.0)
|
|
logger.info(f"Temperature: {self.llm.temperature}")
|
|
else:
|
|
# Use a default temperature
|
|
self.llm.temperature = 0.7
|
|
except Exception as error:
|
|
print(
|
|
colored(
|
|
f"Error dynamically changing temperature: {error}"
|
|
)
|
|
)
|
|
|
|
def format_prompt(self, template, **kwargs: Any) -> str:
|
|
"""Format the template with the provided kwargs using f-string interpolation."""
|
|
return template.format(**kwargs)
|
|
|
|
def add_message_to_memory(self, message: str, *args, **kwargs):
|
|
"""Add the message to the memory"""
|
|
try:
|
|
logger.info(f"Adding message to memory: {message}")
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=message, *args, **kwargs
|
|
)
|
|
except Exception as error:
|
|
print(
|
|
colored(
|
|
f"Error adding message to memory: {error}", "red"
|
|
)
|
|
)
|
|
|
|
# def add_message_to_memory_and_truncate(self, message: str):
|
|
# """Add the message to the memory and truncate"""
|
|
# self.short_memory[-1].append(message)
|
|
# self.truncate_history()
|
|
|
|
def print_dashboard(self):
|
|
"""Print dashboard"""
|
|
print(colored("Initializing Agent Dashboard...", "yellow"))
|
|
|
|
data = self.to_dict()
|
|
|
|
# Beautify the data
|
|
# data = json.dumps(data, indent=4)
|
|
# json_data = json.dumps(data, indent=4)
|
|
|
|
print(
|
|
colored(
|
|
f"""
|
|
Agent Dashboard
|
|
--------------------------------------------
|
|
|
|
Agent {self.agent_name} is initializing for {self.max_loops} with the following configuration:
|
|
----------------------------------------
|
|
|
|
Agent Configuration:
|
|
Configuration: {data}
|
|
|
|
----------------------------------------
|
|
""",
|
|
"green",
|
|
)
|
|
)
|
|
|
|
def loop_count_print(self, loop_count, max_loops):
|
|
"""loop_count_print summary
|
|
|
|
Args:
|
|
loop_count (_type_): _description_
|
|
max_loops (_type_): _description_
|
|
"""
|
|
print(colored(f"\nLoop {loop_count} of {max_loops}", "cyan"))
|
|
print("\n")
|
|
|
|
def check_parameters(self):
|
|
if self.llm is None:
|
|
raise ValueError("Language model is not provided")
|
|
|
|
if self.max_loops is None:
|
|
raise ValueError("Max loops is not provided")
|
|
|
|
if self.max_tokens == 0:
|
|
raise ValueError("Max tokens is not provided")
|
|
|
|
if self.context_length == 0:
|
|
raise ValueError("Context length is not provided")
|
|
|
|
########################## FUNCTION CALLING ##########################
|
|
@run_on_cpu
|
|
def _run(
|
|
self,
|
|
task: Optional[str] = None,
|
|
img: Optional[str] = None,
|
|
is_last: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Run the autonomous agent loop
|
|
"""
|
|
try:
|
|
self.agent_output.task = task
|
|
|
|
# Add task to memory
|
|
self.short_memory.add(role=self.user_name, content=task)
|
|
|
|
# Set the loop count
|
|
loop_count = 0
|
|
|
|
# Clear the short memory
|
|
response = None
|
|
all_responses = []
|
|
|
|
while (
|
|
self.max_loops == "auto"
|
|
or loop_count < self.max_loops
|
|
):
|
|
loop_count += 1
|
|
self.loop_count_print(loop_count, self.max_loops)
|
|
print("\n")
|
|
|
|
# Dynamic temperature
|
|
if self.dynamic_temperature_enabled is True:
|
|
self.dynamic_temperature()
|
|
|
|
# Task prompt
|
|
task_prompt = (
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
|
|
# Parameters
|
|
attempt = 0
|
|
success = False
|
|
while attempt < self.retry_attempts and not success:
|
|
try:
|
|
if self.long_term_memory is not None:
|
|
logger.info(
|
|
"Querying long term memory..."
|
|
)
|
|
self.memory_query(task_prompt)
|
|
|
|
else:
|
|
response_args = (
|
|
(task_prompt, *args)
|
|
if img is None
|
|
else (task_prompt, img, *args)
|
|
)
|
|
response = self.call_llm(
|
|
*response_args, **kwargs
|
|
)
|
|
|
|
# Log the step metadata
|
|
logged = self.log_step_metadata(
|
|
loop_count, task_prompt, response
|
|
)
|
|
logger.info(logged)
|
|
|
|
# Conver to a str if the response is not a str
|
|
response = self.llm_output_parser(
|
|
response
|
|
)
|
|
|
|
# Print
|
|
if self.streaming_on is True:
|
|
self.stream_response(response)
|
|
else:
|
|
print(response)
|
|
|
|
# Add the response to the memory
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=response
|
|
)
|
|
|
|
# Add to all responses
|
|
all_responses.append(response)
|
|
|
|
# TODO: Implement reliablity check
|
|
if self.tools is not None:
|
|
# self.parse_function_call_and_execute(response)
|
|
self.parse_and_execute_tools(response)
|
|
|
|
# if self.code_interpreter is True:
|
|
# # Parse the code and execute
|
|
# logger.info("Parsing code and executing...")
|
|
# code = extract_code_from_markdown(response)
|
|
|
|
# output = self.code_executor.execute(code)
|
|
|
|
# # Add to memory
|
|
# self.short_memory.add(
|
|
# role=self.agent_name, content=output
|
|
# )
|
|
|
|
# # Run the llm on the output
|
|
# response = self.llm(
|
|
# self.short_memory.return_history_as_string()
|
|
# )
|
|
|
|
# # Add to all responses
|
|
# all_responses.append(response)
|
|
# self.short_memory.add(
|
|
# role=self.agent_name, content=response
|
|
# )
|
|
|
|
if self.evaluator:
|
|
logger.info("Evaluating response...")
|
|
evaluated_response = self.evaluator(
|
|
response
|
|
)
|
|
print(
|
|
"Evaluated Response:"
|
|
f" {evaluated_response}"
|
|
)
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=evaluated_response,
|
|
)
|
|
|
|
# all_responses.append(evaluated_response)
|
|
|
|
# Sentiment analysis
|
|
if self.sentiment_analyzer:
|
|
logger.info("Analyzing sentiment...")
|
|
self.sentiment_analysis_handler(response)
|
|
|
|
# print(response)
|
|
|
|
success = True # Mark as successful to exit the retry loop
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Attempt {attempt+1}: Error generating"
|
|
f" response: {e}"
|
|
)
|
|
attempt += 1
|
|
|
|
if not success:
|
|
logger.error(
|
|
"Failed to generate a valid response after"
|
|
" retry attempts."
|
|
)
|
|
break # Exit the loop if all retry attempts fail
|
|
|
|
# # Check stopping conditions
|
|
# if self.stopping_token in response:
|
|
# break
|
|
if (
|
|
self.stopping_condition is not None
|
|
and self._check_stopping_condition(response)
|
|
):
|
|
logger.info("Stopping condition met.")
|
|
break
|
|
elif (
|
|
self.stopping_func is not None
|
|
and self.stopping_func(response)
|
|
):
|
|
logger.info("Stopping function met.")
|
|
break
|
|
|
|
if self.interactive:
|
|
logger.info("Interactive mode enabled.")
|
|
user_input = colored(input("You: "), "red")
|
|
|
|
# User-defined exit command
|
|
if (
|
|
user_input.lower()
|
|
== self.custom_exit_command.lower()
|
|
):
|
|
print("Exiting as per user request.")
|
|
break
|
|
|
|
self.short_memory.add(
|
|
role=self.user_name, content=user_input
|
|
)
|
|
|
|
if self.loop_interval:
|
|
logger.info(
|
|
f"Sleeping for {self.loop_interval} seconds"
|
|
)
|
|
time.sleep(self.loop_interval)
|
|
|
|
if self.autosave is True:
|
|
logger.info("Autosaving agent state.")
|
|
self.save_state(self.saved_state_path)
|
|
|
|
# Apply the cleaner function to the response
|
|
if self.output_cleaner is not None:
|
|
logger.info("Applying output cleaner to response.")
|
|
response = self.output_cleaner(response)
|
|
logger.info(
|
|
f"Response after output cleaner: {response}"
|
|
)
|
|
|
|
# print(response)
|
|
if self.agent_ops_on is True and is_last is True:
|
|
self.check_end_session_agentops()
|
|
|
|
# Merge all responses
|
|
all_responses = [
|
|
response
|
|
for response in all_responses
|
|
if response is not None
|
|
]
|
|
|
|
# return self.agent_output_type(all_responses)
|
|
|
|
return concat_strings(all_responses)
|
|
|
|
except Exception as error:
|
|
logger.info(
|
|
f"Error running agent: {error} optimize your input parameters"
|
|
)
|
|
raise error
|
|
|
|
def __call__(
|
|
self, task: str = None, img: str = None, *args, **kwargs
|
|
):
|
|
"""Call the agent
|
|
|
|
Args:
|
|
task (str): _description_
|
|
img (str, optional): _description_. Defaults to None.
|
|
"""
|
|
try:
|
|
return self.run(task, img, *args, **kwargs)
|
|
except Exception as error:
|
|
logger.error(f"Error calling agent: {error}")
|
|
raise error
|
|
|
|
def parse_and_execute_tools(self, response: str, *args, **kwargs):
|
|
# Extract json from markdown
|
|
# response = extract_code_from_markdown(response)
|
|
|
|
# Try executing the tool
|
|
if self.execute_tool is not False:
|
|
try:
|
|
logger.info("Executing tool...")
|
|
|
|
# try to Execute the tool and return a string
|
|
out = parse_and_execute_json(
|
|
self.tools,
|
|
response,
|
|
parse_md=True,
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
print(f"Tool Output: {out}")
|
|
|
|
# Add the output to the memory
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=out,
|
|
)
|
|
|
|
except Exception as error:
|
|
logger.error(f"Error executing tool: {error}")
|
|
print(
|
|
colored(
|
|
f"Error executing tool: {error}",
|
|
"red",
|
|
)
|
|
)
|
|
|
|
# def long_term_memory_prompt(self, query: str, *args, **kwargs):
|
|
# """
|
|
# Generate the agent long term memory prompt
|
|
|
|
# Args:
|
|
# system_prompt (str): The system prompt
|
|
# history (List[str]): The history of the conversation
|
|
|
|
# Returns:
|
|
# str: The agent history prompt
|
|
# """
|
|
# try:
|
|
# logger.info(f"Querying long term memory database for {query}")
|
|
# ltr = self.long_term_memory.query(query, *args, **kwargs)
|
|
|
|
# # Count the tokens
|
|
# logger.info("Couting tokens of retrieved document")
|
|
# ltr_count = self.tokenizer.count_tokens(ltr)
|
|
# logger.info(f"Retrieved document token count {ltr_count}")
|
|
|
|
# if ltr_count > self.memory_chunk_size:
|
|
# logger.info(
|
|
# f"Truncating memory by {self.memory_chunk_size}"
|
|
# )
|
|
# out = self.truncate_string_by_tokens(
|
|
# ltr, self.memory_chunk_size
|
|
# )
|
|
# logger.info(
|
|
# f"Memory truncated by {self.memory_chunk_size}"
|
|
# )
|
|
|
|
# # Retrieve only the chunk size of the memory
|
|
# return out
|
|
# except Exception as error:
|
|
# logger.error(f"Error querying long term memory: {error}")
|
|
# raise error
|
|
|
|
def add_memory(self, message: str):
|
|
"""Add a memory to the agent
|
|
|
|
Args:
|
|
message (str): _description_
|
|
|
|
Returns:
|
|
_type_: _description_
|
|
"""
|
|
logger.info(f"Adding memory: {message}")
|
|
return self.short_memory.add(
|
|
role=self.agent_name, content=message
|
|
)
|
|
|
|
def plan(self, task: str, *args, **kwargs):
|
|
"""
|
|
Plan the task
|
|
|
|
Args:
|
|
task (str): The task to plan
|
|
"""
|
|
try:
|
|
if exists(self.planning_prompt):
|
|
# Join the plan and the task
|
|
planning_prompt = f"{self.planning_prompt} {task}"
|
|
plan = self.llm(planning_prompt)
|
|
|
|
# Add the plan to the memory
|
|
self.short_memory.add(role=self.agent_name, content=plan)
|
|
|
|
return None
|
|
except Exception as error:
|
|
logger.error(f"Error planning task: {error}")
|
|
raise error
|
|
|
|
async def run_concurrent(self, task: str, *args, **kwargs):
|
|
"""
|
|
Run a task concurrently.
|
|
|
|
Args:
|
|
task (str): The task to run.
|
|
"""
|
|
try:
|
|
logger.info(f"Running concurrent task: {task}")
|
|
future = self.executor.submit(
|
|
self.run, task, *args, **kwargs
|
|
)
|
|
result = await asyncio.wrap_future(future)
|
|
logger.info(f"Completed task: {result}")
|
|
return result
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Error running agent: {error} while running concurrently"
|
|
)
|
|
|
|
def run_concurrent_tasks(self, tasks: List[str], *args, **kwargs):
|
|
"""
|
|
Run multiple tasks concurrently.
|
|
|
|
Args:
|
|
tasks (List[str]): A list of tasks to run.
|
|
"""
|
|
try:
|
|
logger.info(f"Running concurrent tasks: {tasks}")
|
|
futures = [
|
|
self.executor.submit(self.run, task, *args, **kwargs)
|
|
for task in tasks
|
|
]
|
|
results = [future.result() for future in futures]
|
|
logger.info(f"Completed tasks: {results}")
|
|
return results
|
|
except Exception as error:
|
|
logger.error(f"Error running concurrent tasks: {error}")
|
|
|
|
def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]:
|
|
"""
|
|
Generate responses for multiple input sets.
|
|
|
|
Args:
|
|
inputs (List[Dict[str, Any]]): A list of input dictionaries containing the necessary data for each run.
|
|
|
|
Returns:
|
|
List[str]: A list of response strings generated for each input set.
|
|
|
|
Raises:
|
|
Exception: If an error occurs while running the bulk tasks.
|
|
"""
|
|
try:
|
|
logger.info(f"Running bulk tasks: {inputs}")
|
|
return [self.run(**input_data) for input_data in inputs]
|
|
except Exception as error:
|
|
print(colored(f"Error running bulk run: {error}", "red"))
|
|
|
|
def save(self) -> None:
|
|
"""Save the agent history to a file.
|
|
|
|
Args:
|
|
file_path (_type_): _description_
|
|
"""
|
|
try:
|
|
create_file_in_folder(
|
|
self.workspace_dir,
|
|
f"{self.saved_state_path}",
|
|
self.to_dict(),
|
|
)
|
|
return "Saved agent history"
|
|
except Exception as error:
|
|
print(
|
|
colored(f"Error saving agent history: {error}", "red")
|
|
)
|
|
|
|
def load(self, file_path: str):
|
|
"""
|
|
Load the agent history from a file.
|
|
|
|
Args:
|
|
file_path (str): The path to the file containing the saved agent history.
|
|
"""
|
|
with open(file_path, "r") as file:
|
|
data = json.load(file)
|
|
|
|
for key, value in data.items():
|
|
setattr(self, key, value)
|
|
|
|
return "Loaded agent history"
|
|
|
|
def graceful_shutdown(self):
|
|
"""Gracefully shutdown the system saving the state"""
|
|
logger.info("Shutting down the system...")
|
|
return self.save_state(f"{self.agent_name}.json")
|
|
|
|
def analyze_feedback(self):
|
|
"""Analyze the feedback for issues"""
|
|
feedback_counts = {}
|
|
for feedback in self.feedback:
|
|
if feedback in feedback_counts:
|
|
feedback_counts[feedback] += 1
|
|
else:
|
|
feedback_counts[feedback] = 1
|
|
print(f"Feedback counts: {feedback_counts}")
|
|
|
|
def undo_last(self) -> Tuple[str, str]:
|
|
"""
|
|
Response the last response and return the previous state
|
|
|
|
Example:
|
|
# Feature 2: Undo functionality
|
|
response = agent.run("Another task")
|
|
print(f"Response: {response}")
|
|
previous_state, message = agent.undo_last()
|
|
print(message)
|
|
|
|
"""
|
|
if len(self.short_memory) < 2:
|
|
return None, None
|
|
|
|
# Remove the last response but keep the last state, short_memory is a dict
|
|
self.short_memory.delete(-1)
|
|
|
|
# Get the previous state
|
|
previous_state = self.short_memory[-1]
|
|
return previous_state, f"Restored to {previous_state}"
|
|
|
|
# Response Filtering
|
|
def add_response_filter(self, filter_word: str) -> None:
|
|
"""
|
|
Add a response filter to filter out certain words from the response
|
|
|
|
Example:
|
|
agent.add_response_filter("Trump")
|
|
agent.run("Generate a report on Trump")
|
|
|
|
|
|
"""
|
|
logger.info(f"Adding response filter: {filter_word}")
|
|
self.reponse_filters.append(filter_word)
|
|
|
|
def code_interpreter_execution(
|
|
self, code: str, *args, **kwargs
|
|
) -> str:
|
|
# Extract code from markdown
|
|
extracted_code = extract_code_from_markdown(code)
|
|
|
|
# Execute the code
|
|
execution = CodeExecutor().execute(extracted_code)
|
|
|
|
# Add the execution to the memory
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=execution,
|
|
)
|
|
|
|
# Run the llm again
|
|
response = self.llm(
|
|
self.short_memory.return_history_as_string(),
|
|
*args,
|
|
**kwargs,
|
|
)
|
|
|
|
print(f"Response after code interpretation: {response}")
|
|
|
|
return response
|
|
|
|
def apply_reponse_filters(self, response: str) -> str:
|
|
"""
|
|
Apply the response filters to the response
|
|
|
|
"""
|
|
logger.info(
|
|
f"Applying response filters to response: {response}"
|
|
)
|
|
for word in self.response_filters:
|
|
response = response.replace(word, "[FILTERED]")
|
|
return response
|
|
|
|
def filtered_run(self, task: str) -> str:
|
|
"""
|
|
# Feature 3: Response filtering
|
|
agent.add_response_filter("report")
|
|
response = agent.filtered_run("Generate a report on finance")
|
|
print(response)
|
|
"""
|
|
logger.info(f"Running filtered task: {task}")
|
|
raw_response = self.run(task)
|
|
return self.apply_response_filters(raw_response)
|
|
|
|
def save_to_yaml(self, file_path: str) -> None:
|
|
"""
|
|
Save the agent to a YAML file
|
|
|
|
Args:
|
|
file_path (str): The path to the YAML file
|
|
"""
|
|
try:
|
|
logger.info(f"Saving agent to YAML file: {file_path}")
|
|
with open(file_path, "w") as f:
|
|
yaml.dump(self.to_dict(), f)
|
|
except Exception as error:
|
|
print(
|
|
colored(f"Error saving agent to YAML: {error}", "red")
|
|
)
|
|
|
|
def get_llm_parameters(self):
|
|
return str(vars(self.llm))
|
|
|
|
def save_state(self, file_path: str, *args, **kwargs) -> None:
|
|
"""
|
|
Saves the current state of the agent to a JSON file, including the llm parameters.
|
|
|
|
Args:
|
|
file_path (str): The path to the JSON file where the state will be saved.
|
|
|
|
Example:
|
|
>>> agent.save_state('saved_flow.json')
|
|
"""
|
|
try:
|
|
logger.info(
|
|
f"Saving Agent {self.agent_name} state to: {file_path}"
|
|
)
|
|
|
|
json_data = self.to_json()
|
|
|
|
create_file_in_folder(
|
|
self.workspace_dir,
|
|
file_path,
|
|
str(json_data),
|
|
)
|
|
|
|
# Log the saved state
|
|
logger.info(f"Saved agent state to: {file_path}")
|
|
except Exception as error:
|
|
logger.info(f"Error saving agent state: {error}")
|
|
raise error
|
|
|
|
def load_state(self, file_path: str):
|
|
"""
|
|
Loads the state of the agent from a json file and restores the configuration and memory.
|
|
|
|
|
|
Example:
|
|
>>> agent = Agent(llm=llm_instance, max_loops=5)
|
|
>>> agent.load_state('saved_flow.json')
|
|
>>> agent.run("Continue with the task")
|
|
|
|
"""
|
|
try:
|
|
with open(file_path, "r") as file:
|
|
data = json.load(file)
|
|
|
|
for key, value in data.items():
|
|
setattr(self, key, value)
|
|
|
|
logger.info(f"Agent state loaded from {file_path}")
|
|
except Exception as error:
|
|
logger.info(f"Error loading agent state: {error}")
|
|
raise error
|
|
|
|
def update_system_prompt(self, system_prompt: str):
|
|
"""Upddate the system message"""
|
|
self.system_prompt = system_prompt
|
|
|
|
def update_max_loops(self, max_loops: int):
|
|
"""Update the max loops"""
|
|
self.max_loops = max_loops
|
|
|
|
def update_loop_interval(self, loop_interval: int):
|
|
"""Update the loop interval"""
|
|
self.loop_interval = loop_interval
|
|
|
|
def update_retry_attempts(self, retry_attempts: int):
|
|
"""Update the retry attempts"""
|
|
self.retry_attempts = retry_attempts
|
|
|
|
def update_retry_interval(self, retry_interval: int):
|
|
"""Update the retry interval"""
|
|
self.retry_interval = retry_interval
|
|
|
|
def reset(self):
|
|
"""Reset the agent"""
|
|
self.short_memory = None
|
|
|
|
def ingest_docs(self, docs: List[str], *args, **kwargs):
|
|
"""Ingest the docs into the memory
|
|
|
|
Args:
|
|
docs (List[str]): Documents of pdfs, text, csvs
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
try:
|
|
for doc in docs:
|
|
data = data_to_text(doc)
|
|
|
|
return self.short_memory.add(
|
|
role=self.user_name, content=data
|
|
)
|
|
except Exception as error:
|
|
print(colored(f"Error ingesting docs: {error}", "red"))
|
|
|
|
def ingest_pdf(self, pdf: str):
|
|
"""Ingest the pdf into the memory
|
|
|
|
Args:
|
|
pdf (str): file path of pdf
|
|
"""
|
|
try:
|
|
logger.info(f"Ingesting pdf: {pdf}")
|
|
text = pdf_to_text(pdf)
|
|
return self.short_memory.add(
|
|
role=self.user_name, content=text
|
|
)
|
|
except Exception as error:
|
|
print(colored(f"Error ingesting pdf: {error}", "red"))
|
|
|
|
def receieve_message(self, name: str, message: str):
|
|
"""Receieve a message"""
|
|
try:
|
|
message = f"{name}: {message}"
|
|
return self.short_memory.add(role=name, content=message)
|
|
except Exception as error:
|
|
logger.info(f"Error receiving message: {error}")
|
|
raise error
|
|
|
|
def send_agent_message(
|
|
self, agent_name: str, message: str, *args, **kwargs
|
|
):
|
|
"""Send a message to the agent"""
|
|
try:
|
|
logger.info(f"Sending agent message: {message}")
|
|
message = f"{agent_name}: {message}"
|
|
return self.run(message, *args, **kwargs)
|
|
except Exception as error:
|
|
logger.info(f"Error sending agent message: {error}")
|
|
raise error
|
|
|
|
def add_tool(self, tool: Callable):
|
|
return self.tools.append(tool)
|
|
|
|
def add_tools(self, tools: List[Callable]):
|
|
return self.tools.extend(tools)
|
|
|
|
def remove_tool(self, tool: Callable):
|
|
return self.tools.remove(tool)
|
|
|
|
def remove_tools(self, tools: List[Callable]):
|
|
for tool in tools:
|
|
self.tools.remove(tool)
|
|
|
|
def get_docs_from_doc_folders(self):
|
|
"""Get the docs from the files"""
|
|
try:
|
|
logger.info("Getting docs from doc folders")
|
|
# Get the list of files then extract them and add them to the memory
|
|
files = os.listdir(self.docs_folder)
|
|
|
|
# Extract the text from the files
|
|
for file in files:
|
|
text = data_to_text(file)
|
|
|
|
return self.short_memory.add(
|
|
role=self.user_name, content=text
|
|
)
|
|
except Exception as error:
|
|
print(
|
|
colored(
|
|
f"Error getting docs from doc folders: {error}",
|
|
"red",
|
|
)
|
|
)
|
|
|
|
def check_end_session_agentops(self):
|
|
if self.agent_ops_on is True:
|
|
try:
|
|
from swarms.utils.agent_ops_check import (
|
|
end_session_agentops,
|
|
)
|
|
|
|
# Try ending the session
|
|
return end_session_agentops()
|
|
except ImportError:
|
|
logger.error(
|
|
"Could not import agentops, try installing agentops: $ pip3 install agentops"
|
|
)
|
|
|
|
def memory_query(self, task: str = None, *args, **kwargs) -> str:
|
|
try:
|
|
# Query the long term memory
|
|
if self.long_term_memory is not None:
|
|
logger.info(f"Querying long term memory for: {task}")
|
|
memory_retrieval = self.long_term_memory.query(
|
|
task, *args, **kwargs
|
|
)
|
|
|
|
memory_token_count = self.tokenizer.count_tokens(
|
|
memory_retrieval
|
|
)
|
|
|
|
if memory_token_count > self.memory_chunk_size:
|
|
# Truncate the memory by the memory chunk size
|
|
memory_retrieval = self.truncate_string_by_tokens(
|
|
memory_retrieval, self.memory_chunk_size
|
|
)
|
|
|
|
# Merge the task prompt with the memory retrieval
|
|
task_prompt = (
|
|
f"{task} Documents Available: {memory_retrieval}"
|
|
)
|
|
|
|
response = self.llm(task_prompt, *args, **kwargs)
|
|
print(response)
|
|
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=response
|
|
)
|
|
|
|
return response
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
return None
|
|
|
|
def sentiment_analysis_handler(self, response: str = None):
|
|
"""
|
|
Performs sentiment analysis on the given response and stores the result in the short-term memory.
|
|
|
|
Args:
|
|
response (str): The response to analyze sentiment for.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
try:
|
|
# Sentiment analysis
|
|
if self.sentiment_analyzer:
|
|
sentiment = self.sentiment_analyzer(response)
|
|
print(f"Sentiment: {sentiment}")
|
|
|
|
if sentiment > self.sentiment_threshold:
|
|
print(
|
|
f"Sentiment: {sentiment} is above"
|
|
" threshold:"
|
|
f" {self.sentiment_threshold}"
|
|
)
|
|
elif sentiment < self.sentiment_threshold:
|
|
print(
|
|
f"Sentiment: {sentiment} is below"
|
|
" threshold:"
|
|
f" {self.sentiment_threshold}"
|
|
)
|
|
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=sentiment,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error occurred during sentiment analysis: {e}")
|
|
|
|
def count_and_shorten_context_window(
|
|
self, history: str, *args, **kwargs
|
|
):
|
|
"""
|
|
Count the number of tokens in the context window and shorten it if it exceeds the limit.
|
|
|
|
Args:
|
|
history (str): The history of the conversation.
|
|
|
|
Returns:
|
|
str: The shortened context window.
|
|
"""
|
|
# Count the number of tokens in the context window
|
|
count = self.tokenizer.count_tokens(history)
|
|
|
|
# Shorten the context window if it exceeds the limit, keeping the last n tokens, need to implement the indexing
|
|
if count > self.context_length:
|
|
history = history[-self.context_length :]
|
|
|
|
return history
|
|
|
|
def output_cleaner_and_output_type(
|
|
self, response: str, *args, **kwargs
|
|
):
|
|
"""
|
|
Applies the output cleaner function to the response and prepares the output for the output model.
|
|
|
|
Args:
|
|
response (str): The response to be processed.
|
|
|
|
Returns:
|
|
str: The processed response.
|
|
"""
|
|
# Apply the cleaner function to the response
|
|
if self.output_cleaner is not None:
|
|
logger.info("Applying output cleaner to response.")
|
|
response = self.output_cleaner(response)
|
|
logger.info(f"Response after output cleaner: {response}")
|
|
|
|
# Prepare the output for the output model
|
|
if self.output_type is not None:
|
|
# logger.info("Preparing output for output model.")
|
|
response = prepare_output_for_output_model(response)
|
|
print(f"Response after output model: {response}")
|
|
|
|
return response
|
|
|
|
def stream_response(
|
|
self, response: str, delay: float = 0.001
|
|
) -> None:
|
|
"""
|
|
Streams the response token by token.
|
|
|
|
Args:
|
|
response (str): The response text to be streamed.
|
|
delay (float, optional): Delay in seconds between printing each token. Default is 0.1 seconds.
|
|
|
|
Raises:
|
|
ValueError: If the response is not provided.
|
|
Exception: For any errors encountered during the streaming process.
|
|
|
|
Example:
|
|
response = "This is a sample response from the API."
|
|
stream_response(response)
|
|
"""
|
|
# Check for required inputs
|
|
if not response:
|
|
raise ValueError("Response is required.")
|
|
|
|
try:
|
|
# Stream and print the response token by token
|
|
for token in response.split():
|
|
print(token, end=" ", flush=True)
|
|
time.sleep(delay)
|
|
print() # Ensure a newline after streaming
|
|
except Exception as e:
|
|
print(f"An error occurred during streaming: {e}")
|
|
|
|
def dynamic_context_window(self):
|
|
"""
|
|
dynamic_context_window essentially clears everything execep
|
|
the system prompt and leaves the rest of the contxt window
|
|
for RAG query tokens
|
|
|
|
"""
|
|
# Count the number of tokens in the short term memory
|
|
logger.info("Dynamic context window shuffling enabled")
|
|
count = self.tokenizer.count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
logger.info(f"Number of tokens in memory: {count}")
|
|
|
|
# Dynamically allocating everything except the system prompt to be dynamic
|
|
# We need to query the short_memory dict, for the system prompt slot
|
|
# Then delete everything after that
|
|
|
|
if count > self.context_length:
|
|
self.short_memory = self.short_memory[
|
|
-self.context_length :
|
|
]
|
|
logger.info(
|
|
f"Short term memory has been truncated to {self.context_length} tokens"
|
|
)
|
|
else:
|
|
logger.info("Short term memory is within the limit")
|
|
|
|
# Return the memory as a string or update the short term memory
|
|
# return memory
|
|
|
|
def check_available_tokens(self):
|
|
# Log the amount of tokens left in the memory and in the task
|
|
if self.tokenizer is not None:
|
|
tokens_used = self.tokenizer.count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
logger.info(
|
|
f"Tokens available: {self.context_length - tokens_used}"
|
|
)
|
|
|
|
return tokens_used
|
|
|
|
def tokens_checks(self):
|
|
# Check the tokens available
|
|
tokens_used = self.tokenizer.count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
out = self.check_available_tokens()
|
|
|
|
logger.info(
|
|
f"Tokens available: {out} Context Length: {self.context_length} Tokens in memory: {tokens_used}"
|
|
)
|
|
|
|
return out
|
|
|
|
def truncate_string_by_tokens(
|
|
self, input_string: str, limit: int
|
|
) -> str:
|
|
"""
|
|
Truncate a string if it exceeds a specified number of tokens using a given tokenizer.
|
|
|
|
:param input_string: The input string to be tokenized and truncated.
|
|
:param tokenizer: The tokenizer function to be used for tokenizing the input string.
|
|
:param max_tokens: The maximum number of tokens allowed.
|
|
:return: The truncated string if it exceeds the maximum number of tokens; otherwise, the original string.
|
|
"""
|
|
# Tokenize the input string
|
|
tokens = self.tokenizer.count_tokens(input_string)
|
|
|
|
# Check if the number of tokens exceeds the maximum limit
|
|
if len(tokens) > limit:
|
|
# Truncate the tokens to the maximum allowed tokens
|
|
truncated_tokens = tokens[: self.context_length]
|
|
# Join the truncated tokens back to a string
|
|
truncated_string = " ".join(truncated_tokens)
|
|
return truncated_string
|
|
else:
|
|
return input_string
|
|
|
|
def if_tokens_exceeds_context_length(self):
|
|
# Check if tokens exceeds the context length
|
|
try:
|
|
tokens_used = self.tokenizer.count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
if tokens_used > self.context_length:
|
|
logger.warning(
|
|
"Tokens used exceeds the context length."
|
|
)
|
|
logger.info(
|
|
f"Tokens available: {tokens_used - self.context_length}"
|
|
)
|
|
return True
|
|
else:
|
|
return False
|
|
except Exception as e:
|
|
logger.error(f"Error checking tokens: {e}")
|
|
return None
|
|
|
|
def tokens_operations(self, input_string: str) -> str:
|
|
"""
|
|
Perform various operations on tokens of an input string.
|
|
|
|
:param input_string: The input string to be processed.
|
|
:return: The processed string.
|
|
"""
|
|
# Tokenize the input string
|
|
tokens = self.tokenizer.count_tokens(input_string)
|
|
|
|
# Check if the number of tokens exceeds the maximum limit
|
|
if len(tokens) > self.context_length:
|
|
# Truncate the tokens to the maximum allowed tokens
|
|
truncated_tokens = tokens[: self.context_length]
|
|
# Join the truncated tokens back to a string
|
|
truncated_string = " ".join(truncated_tokens)
|
|
return truncated_string
|
|
else:
|
|
# Log the amount of tokens left in the memory and in the task
|
|
if self.tokenizer is not None:
|
|
tokens_used = self.tokenizer.count_tokens(
|
|
self.short_memory.return_history_as_string()
|
|
)
|
|
logger.info(
|
|
f"Tokens available: {tokens_used - self.context_length}"
|
|
)
|
|
return input_string
|
|
|
|
def parse_function_call_and_execute(self, response: str):
|
|
"""
|
|
Parses a function call from the given response and executes it.
|
|
|
|
Args:
|
|
response (str): The response containing the function call.
|
|
|
|
Returns:
|
|
None
|
|
|
|
Raises:
|
|
Exception: If there is an error parsing and executing the function call.
|
|
"""
|
|
try:
|
|
if self.tools is not None:
|
|
tool_call_output = parse_and_execute_json(
|
|
self.tools, response, parse_md=True
|
|
)
|
|
|
|
if tool_call_output is not str:
|
|
tool_call_output = str(tool_call_output)
|
|
|
|
logger.info(f"Tool Call Output: {tool_call_output}")
|
|
self.short_memory.add(
|
|
role=self.agent_name,
|
|
content=tool_call_output,
|
|
)
|
|
|
|
return tool_call_output
|
|
except Exception as error:
|
|
logger.error(
|
|
f"Error parsing and executing function call: {error}"
|
|
)
|
|
|
|
# Raise a custom exception with the error message
|
|
raise Exception(
|
|
"Error parsing and executing function call"
|
|
) from error
|
|
|
|
def activate_agentops(self):
|
|
if self.agent_ops_on is True:
|
|
try:
|
|
from swarms.utils.agent_ops_check import (
|
|
try_import_agentops,
|
|
)
|
|
|
|
# Try importing agent ops
|
|
logger.info(
|
|
"Agent Ops Initializing, ensure that you have the agentops API key and the pip package installed."
|
|
)
|
|
try_import_agentops()
|
|
self.agent_ops_agent_name = self.agent_name
|
|
|
|
logger.info("Agentops successfully activated!")
|
|
except ImportError:
|
|
logger.error(
|
|
"Could not import agentops, try installing agentops: $ pip3 install agentops"
|
|
)
|
|
|
|
async def count_tokens_and_subtract_from_context_window(
|
|
self, response: str, *args, **kwargs
|
|
):
|
|
"""
|
|
Count the number of tokens in the response and subtract it from the context window.
|
|
|
|
Args:
|
|
response (str): The response to count the tokens from.
|
|
|
|
Returns:
|
|
str: The response after counting the tokens and subtracting it from the context window.
|
|
"""
|
|
# Count the number of tokens in the response
|
|
tokens = self.tokenizer.count_tokens(response)
|
|
|
|
# Subtract the number of tokens from the context window
|
|
self.context_length -= len(tokens)
|
|
|
|
return response
|
|
|
|
def llm_output_parser(self, response: Any) -> str:
|
|
"""
|
|
Parses the response from the LLM (Low-Level Monitor) and returns it as a string.
|
|
|
|
Args:
|
|
response (Any): The response from the LLM.
|
|
|
|
Returns:
|
|
str: The parsed response as a string.
|
|
"""
|
|
if response is not str:
|
|
response = str(response)
|
|
|
|
return response
|
|
|
|
def log_step_metadata(
|
|
self, loop: int, task: str, response: str
|
|
) -> Step:
|
|
# # # Step Metadata
|
|
# full_memory = self.short_memory.return_history_as_string()
|
|
# prompt_tokens = self.tokenizer.count_tokens(full_memory)
|
|
# completion_tokens = self.tokenizer.count_tokens(response)
|
|
# self.tokenizer.count_tokens(prompt_tokens + completion_tokens)
|
|
|
|
step_log = Step(
|
|
response=AgentChatCompletionResponse(
|
|
id=self.agent_id,
|
|
agent_name=self.agent_name,
|
|
object="chat.completion",
|
|
choices=ChatCompletionResponseChoice(
|
|
index=loop,
|
|
input=task,
|
|
message=ChatMessageResponse(
|
|
role=self.agent_name,
|
|
content=response,
|
|
),
|
|
),
|
|
# usage=UsageInfo(
|
|
# prompt_tokens=prompt_tokens,
|
|
# total_tokens=total_tokens,
|
|
# completion_tokens=completion_tokens,
|
|
# ),
|
|
),
|
|
)
|
|
|
|
self.step_pool.append(step_log)
|
|
|
|
def _serialize_callable(
|
|
self, attr_value: Callable
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Serializes callable attributes by extracting their name and docstring.
|
|
|
|
Args:
|
|
attr_value (Callable): The callable to serialize.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Dictionary with name and docstring of the callable.
|
|
"""
|
|
return {
|
|
"name": getattr(
|
|
attr_value, "__name__", type(attr_value).__name__
|
|
),
|
|
"doc": getattr(attr_value, "__doc__", None),
|
|
}
|
|
|
|
def _serialize_attr(self, attr_name: str, attr_value: Any) -> Any:
|
|
"""
|
|
Serializes an individual attribute, handling non-serializable objects.
|
|
|
|
Args:
|
|
attr_name (str): The name of the attribute.
|
|
attr_value (Any): The value of the attribute.
|
|
|
|
Returns:
|
|
Any: The serialized value of the attribute.
|
|
"""
|
|
try:
|
|
if callable(attr_value):
|
|
return self._serialize_callable(attr_value)
|
|
elif hasattr(attr_value, "to_dict"):
|
|
return (
|
|
attr_value.to_dict()
|
|
) # Recursive serialization for nested objects
|
|
else:
|
|
json.dumps(
|
|
attr_value
|
|
) # Attempt to serialize to catch non-serializable objects
|
|
return attr_value
|
|
except (TypeError, ValueError):
|
|
return f"<Non-serializable: {type(attr_value).__name__}>"
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""
|
|
Converts all attributes of the class, including callables, into a dictionary.
|
|
Handles non-serializable attributes by converting them or skipping them.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A dictionary representation of the class attributes.
|
|
"""
|
|
return {
|
|
attr_name: self._serialize_attr(attr_name, attr_value)
|
|
for attr_name, attr_value in self.__dict__.items()
|
|
}
|
|
|
|
def to_json(self, indent: int = 4, *args, **kwargs):
|
|
return json.dumps(
|
|
self.to_dict(), indent=indent, *args, **kwargs
|
|
)
|
|
|
|
def to_yaml(self, indent: int = 4, *args, **kwargs):
|
|
return yaml.dump(
|
|
self.to_dict(), indent=indent, *args, **kwargs
|
|
)
|
|
|
|
def to_toml(self, *args, **kwargs):
|
|
return toml.dumps(self.to_dict(), *args, **kwargs)
|
|
|
|
def model_dump_json(self):
|
|
logger.info(
|
|
f"Saving {self.agent_name} model to JSON in the {self.workspace_dir} directory"
|
|
)
|
|
|
|
create_file_in_folder(
|
|
self.workspace_dir,
|
|
f"{self.agent_name}.json",
|
|
str(self.to_json()),
|
|
)
|
|
|
|
return f"Model saved to {self.workspace_dir}/{self.agent_name}.json"
|
|
|
|
def model_dump_yaml(self):
|
|
logger.info(
|
|
f"Saving {self.agent_name} model to YAML in the {self.workspace_dir} directory"
|
|
)
|
|
|
|
create_file_in_folder(
|
|
self.workspace_dir,
|
|
f"{self.agent_name}.yaml",
|
|
self.to_yaml(),
|
|
)
|
|
|
|
return f"Model saved to {self.workspace_dir}/{self.agent_name}.yaml"
|
|
|
|
def log_agent_data(self):
|
|
import requests
|
|
|
|
data_dict = {"data": self.to_dict()}
|
|
|
|
url = "https://swarms.world/api/get-agents/log-agents"
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": "Bearer sk-f24a13ed139f757d99cdd9cdcae710fccead92681606a97086d9711f69d44869",
|
|
}
|
|
|
|
response = requests.post(url, json=data_dict, headers=headers)
|
|
|
|
return response.json()
|
|
|
|
def handle_tool_schema_ops(self):
|
|
if exists(self.tool_schema):
|
|
logger.info(f"Tool schema provided: {self.tool_schema}")
|
|
|
|
output = self.tool_struct.base_model_to_dict(
|
|
self.tool_schema, output_str=True
|
|
)
|
|
|
|
# Add the tool schema to the short memory
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=output
|
|
)
|
|
|
|
# If multiple base models, then conver them.
|
|
if exists(self.list_base_models):
|
|
logger.info(
|
|
"Multiple base models provided, Automatically converting to OpenAI function"
|
|
)
|
|
|
|
schemas = self.tool_struct.multi_base_models_to_dict(
|
|
output_str=True
|
|
)
|
|
|
|
# If the output is a string then add it to the memory
|
|
self.short_memory.add(
|
|
role=self.agent_name, content=schemas
|
|
)
|
|
|
|
return None
|
|
|
|
def call_llm(self, task: str, *args, **kwargs) -> str:
|
|
"""
|
|
Calls the appropriate method on the `llm` object based on the given task.
|
|
|
|
Args:
|
|
task (str): The task to be performed by the `llm` object.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
The result of the method call on the `llm` object.
|
|
|
|
"""
|
|
# Check if the llm has a __call__, or run, or any other method
|
|
if hasattr(self.llm, "__call__"):
|
|
return self.llm(task, *args, **kwargs)
|
|
elif hasattr(self.llm, "run"):
|
|
return self.llm.run(task, *args, **kwargs)
|
|
elif hasattr(self.llm, "generate"):
|
|
return self.llm.generate(task, *args, **kwargs)
|
|
elif hasattr(self.llm, "invoke"):
|
|
return self.llm.invoke(task, *args, **kwargs)
|
|
else:
|
|
raise AttributeError(
|
|
"No suitable method found in the llm object."
|
|
)
|
|
|
|
def handle_sop_ops(self):
|
|
# If the user inputs a list of strings for the sop then join them and set the sop
|
|
if exists(self.sop_list):
|
|
self.sop = "\n".join(self.sop_list)
|
|
self.short_memory.add(
|
|
role=self.user_name, content=self.sop
|
|
)
|
|
|
|
if exists(self.sop):
|
|
self.short_memory.add(
|
|
role=self.user_name, content=self.sop
|
|
)
|
|
|
|
def agent_output_type(self, responses: list):
|
|
if self.output_type == "list":
|
|
return responses
|
|
|
|
elif self.output_type == "str" or "string":
|
|
return concat_strings(responses)
|
|
|
|
elif self.return_step_meta is True:
|
|
return self.agent_output.model_dump_json(indent=4)
|
|
|
|
elif self.output_type == "yaml":
|
|
model = YamlModel()
|
|
return model.dict_to_yaml(self.agent_output.model_dump())
|
|
|
|
elif self.output_type == "dict":
|
|
return self.agent_output.model_dump()
|
|
|
|
elif self.return_history:
|
|
return self.short_memory.return_history_as_string()
|
|
|
|
def run(
|
|
self,
|
|
task: Optional[str] = None,
|
|
img: Optional[str] = None,
|
|
is_last: bool = False,
|
|
device: str = "cpu", # gpu
|
|
device_id: int = 0,
|
|
all_cores: bool = True,
|
|
*args,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""
|
|
Executes the agent's run method on a specified device.
|
|
|
|
This method attempts to execute the agent's run method on a specified device, either CPU or GPU. It logs the device selection and the number of cores or GPU ID used. If the device is set to CPU, it can use all available cores or a specific core specified by `device_id`. If the device is set to GPU, it uses the GPU specified by `device_id`.
|
|
|
|
Args:
|
|
task (Optional[str], optional): The task to be executed. Defaults to None.
|
|
img (Optional[str], optional): The image to be processed. Defaults to None.
|
|
is_last (bool, optional): Indicates if this is the last task. Defaults to False.
|
|
device (str, optional): The device to use for execution. Defaults to "cpu".
|
|
device_id (int, optional): The ID of the GPU to use if device is set to "gpu". Defaults to 0.
|
|
all_cores (bool, optional): If True, uses all available CPU cores. Defaults to True.
|
|
*args: Additional positional arguments to be passed to the execution method.
|
|
**kwargs: Additional keyword arguments to be passed to the execution method.
|
|
|
|
Returns:
|
|
Any: The result of the execution.
|
|
|
|
Raises:
|
|
ValueError: If an invalid device is specified.
|
|
Exception: If any other error occurs during execution.
|
|
"""
|
|
try:
|
|
logger.info(f"Attempting to run on device: {device}")
|
|
if device == "cpu":
|
|
logger.info("Device set to CPU")
|
|
if all_cores is True:
|
|
count = os.cpu_count()
|
|
logger.info(
|
|
f"Using all available CPU cores: {count}"
|
|
)
|
|
else:
|
|
count = device_id
|
|
logger.info(f"Using specific CPU core: {count}")
|
|
|
|
return execute_with_cpu_cores(
|
|
count, self._run, task, img, *args, **kwargs
|
|
)
|
|
|
|
# If device gpu
|
|
elif device == "gpu":
|
|
logger.info("Device set to GPU")
|
|
return execute_on_gpu(
|
|
device_id, self._run, task, img, *args, **kwargs
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Invalid device specified: {device}. Supported devices are 'cpu' and 'gpu'."
|
|
)
|
|
except ValueError as e:
|
|
logger.error(f"Invalid device specified: {e}")
|
|
raise e
|
|
except Exception as e:
|
|
logger.error(f"An error occurred during execution: {e}")
|
|
raise e
|