You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
7.6 KiB
245 lines
7.6 KiB
import os
|
|
import asyncio
|
|
from pydantic import BaseModel, Field
|
|
from typing import List, Dict, Any
|
|
from swarms import Agent
|
|
from swarm_models import OpenAIChat
|
|
from dotenv import load_dotenv
|
|
from swarms.utils.formatter import formatter
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# Get OpenAI API key
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
# Define Pydantic schema for agent outputs
|
|
class AgentOutput(BaseModel):
|
|
"""Schema for capturing the output of each agent."""
|
|
|
|
agent_name: str = Field(..., description="The name of the agent")
|
|
message: str = Field(
|
|
...,
|
|
description="The agent's response or contribution to the group chat",
|
|
)
|
|
metadata: Dict[str, Any] = Field(
|
|
default_factory=dict,
|
|
description="Additional metadata about the agent's response",
|
|
)
|
|
|
|
|
|
class GroupChat:
|
|
"""
|
|
GroupChat class to enable multiple agents to communicate in an asynchronous group chat.
|
|
Each agent is aware of all other agents, every message exchanged, and the social context.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
description: str,
|
|
agents: List[Agent],
|
|
max_loops: int = 1,
|
|
):
|
|
"""
|
|
Initialize the GroupChat.
|
|
|
|
Args:
|
|
name (str): Name of the group chat.
|
|
description (str): Description of the purpose of the group chat.
|
|
agents (List[Agent]): A list of agents participating in the chat.
|
|
max_loops (int): Maximum number of loops to run through all agents.
|
|
"""
|
|
self.name = name
|
|
self.description = description
|
|
self.agents = agents
|
|
self.max_loops = max_loops
|
|
self.chat_history = (
|
|
[]
|
|
) # Stores all messages exchanged in the chat
|
|
|
|
formatter.print_panel(
|
|
f"Initialized GroupChat '{self.name}' with {len(self.agents)} agents. Max loops: {self.max_loops}",
|
|
title="Groupchat Swarm",
|
|
)
|
|
|
|
async def _agent_conversation(
|
|
self, agent: Agent, input_message: str
|
|
) -> AgentOutput:
|
|
"""
|
|
Facilitate a single agent's response to the chat.
|
|
|
|
Args:
|
|
agent (Agent): The agent responding.
|
|
input_message (str): The message triggering the response.
|
|
|
|
Returns:
|
|
AgentOutput: The agent's response captured in a structured format.
|
|
"""
|
|
formatter.print_panel(
|
|
f"Agent '{agent.agent_name}' is responding to the message: {input_message}",
|
|
title="Groupchat Swarm",
|
|
)
|
|
response = await asyncio.to_thread(agent.run, input_message)
|
|
|
|
output = AgentOutput(
|
|
agent_name=agent.agent_name,
|
|
message=response,
|
|
metadata={"context_length": agent.context_length},
|
|
)
|
|
# logger.debug(f"Agent '{agent.agent_name}' response: {response}")
|
|
return output
|
|
|
|
async def _run(self, initial_message: str) -> List[AgentOutput]:
|
|
"""
|
|
Execute the group chat asynchronously, looping through all agents up to max_loops.
|
|
|
|
Args:
|
|
initial_message (str): The initial message to start the chat.
|
|
|
|
Returns:
|
|
List[AgentOutput]: The responses of all agents across all loops.
|
|
"""
|
|
formatter.print_panel(
|
|
f"Starting group chat '{self.name}' with initial message: {initial_message}",
|
|
title="Groupchat Swarm",
|
|
)
|
|
self.chat_history.append(
|
|
{"sender": "System", "message": initial_message}
|
|
)
|
|
|
|
outputs = []
|
|
for loop in range(self.max_loops):
|
|
formatter.print_panel(
|
|
f"Group chat loop {loop + 1}/{self.max_loops}",
|
|
title="Groupchat Swarm",
|
|
)
|
|
|
|
for agent in self.agents:
|
|
# Create a custom input message for each agent, sharing the chat history and social context
|
|
input_message = (
|
|
f"Chat History:\n{self._format_chat_history()}\n\n"
|
|
f"Participants:\n"
|
|
+ "\n".join(
|
|
[
|
|
f"- {a.agent_name}: {a.system_prompt}"
|
|
for a in self.agents
|
|
]
|
|
)
|
|
+ f"\n\nNew Message: {initial_message}\n\n"
|
|
f"You are '{agent.agent_name}'. Remember to keep track of the social context, who is speaking, "
|
|
f"and respond accordingly based on your role: {agent.system_prompt}."
|
|
)
|
|
|
|
# Collect agent's response
|
|
output = await self._agent_conversation(
|
|
agent, input_message
|
|
)
|
|
outputs.append(output)
|
|
|
|
# Update chat history with the agent's response
|
|
self.chat_history.append(
|
|
{
|
|
"sender": agent.agent_name,
|
|
"message": output.message,
|
|
}
|
|
)
|
|
|
|
formatter.print_panel(
|
|
"Group chat completed. All agent responses captured.",
|
|
title="Groupchat Swarm",
|
|
)
|
|
return outputs
|
|
|
|
def run(self, task: str, *args, **kwargs):
|
|
return asyncio.run(self.run(task, *args, **kwargs))
|
|
|
|
def _format_chat_history(self) -> str:
|
|
"""
|
|
Format the chat history for agents to understand the context.
|
|
|
|
Returns:
|
|
str: The formatted chat history as a string.
|
|
"""
|
|
return "\n".join(
|
|
[
|
|
f"{entry['sender']}: {entry['message']}"
|
|
for entry in self.chat_history
|
|
]
|
|
)
|
|
|
|
def __str__(self) -> str:
|
|
"""String representation of the group chat's outputs."""
|
|
return self._format_chat_history()
|
|
|
|
def to_json(self) -> str:
|
|
"""JSON representation of the group chat's outputs."""
|
|
return [
|
|
{"sender": entry["sender"], "message": entry["message"]}
|
|
for entry in self.chat_history
|
|
]
|
|
|
|
|
|
# Example Usage
|
|
if __name__ == "__main__":
|
|
|
|
load_dotenv()
|
|
|
|
# Get the OpenAI API key from the environment variable
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
# Create an instance of the OpenAIChat class
|
|
model = OpenAIChat(
|
|
openai_api_key=api_key,
|
|
model_name="gpt-4o-mini",
|
|
temperature=0.1,
|
|
)
|
|
|
|
# Example agents
|
|
agent1 = Agent(
|
|
agent_name="Financial-Analysis-Agent",
|
|
system_prompt="You are a financial analyst specializing in investment strategies.",
|
|
llm=model,
|
|
max_loops=1,
|
|
autosave=False,
|
|
dashboard=False,
|
|
verbose=True,
|
|
dynamic_temperature_enabled=True,
|
|
user_name="swarms_corp",
|
|
retry_attempts=1,
|
|
context_length=200000,
|
|
output_type="string",
|
|
streaming_on=False,
|
|
)
|
|
|
|
agent2 = Agent(
|
|
agent_name="Tax-Adviser-Agent",
|
|
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
|
|
llm=model,
|
|
max_loops=1,
|
|
autosave=False,
|
|
dashboard=False,
|
|
verbose=True,
|
|
dynamic_temperature_enabled=True,
|
|
user_name="swarms_corp",
|
|
retry_attempts=1,
|
|
context_length=200000,
|
|
output_type="string",
|
|
streaming_on=False,
|
|
)
|
|
|
|
# Create group chat
|
|
group_chat = GroupChat(
|
|
name="Financial Discussion",
|
|
description="A group chat for financial analysis and tax advice.",
|
|
agents=[agent1, agent2],
|
|
)
|
|
|
|
# Run the group chat
|
|
asyncio.run(
|
|
group_chat.run(
|
|
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria? What do you guys think?"
|
|
)
|
|
)
|