You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/app.py

492 lines
21 KiB

import boto3
from botocore.exceptions import NoCredentialsError
import tokenize
import requests
import os
import time
from functools import partial
from pathlib import Path
from threading import Lock
import warnings
import json
from swarms.modelui.modules.block_requests import OpenMonkeyPatch, RequestBlocker
from swarms.modelui.modules.logging_colors import logger
from swarms.modelui.server import create_interface
from vllm import LLM
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings('ignore', category=UserWarning, message='Using the update method is deprecated')
warnings.filterwarnings('ignore', category=UserWarning, message='Field "model_name" has conflict')
with RequestBlocker():
import gradio as gr
import matplotlib
matplotlib.use('Agg') # This fixes LaTeX rendering on some systems
import swarms.modelui.modules.extensions as extensions_module
from swarms.modelui.modules import (
chat,
shared,
training,
ui,
ui_chat,
ui_default,
ui_file_saving,
ui_model_menu,
ui_notebook,
ui_parameters,
ui_session,
utils
)
from swarms.modelui.modules.extensions import apply_extensions
from swarms.modelui.modules.LoRA import add_lora_to_model
from swarms.modelui.modules.models import load_model
from swarms.modelui.modules.models_settings import (
get_fallback_settings,
get_model_metadata,
update_model_parameters
)
from swarms.modelui.modules.utils import gradio
import gradio as gr
from swarms.tools.tools_controller import MTQuestionAnswerer, load_valid_tools
from swarms.tools.singletool import STQuestionAnswerer
from langchain.schema import AgentFinish
import requests
from swarms.modelui.server import create_interface
from tool_server import run_tool_server
from threading import Thread
from multiprocessing import Process
import time
from langchain.llms import VLLM
import yaml
tool_server_flag = False
def start_tool_server():
# server = Thread(target=run_tool_server)
server = Process(target=run_tool_server)
server.start()
global tool_server_flag
tool_server_flag = True
DEFAULTMODEL = "ChatGPT" # "GPT-3.5"
# Read the model/ directory and get the list of models
model_dir = Path("./models/")
available_models = ["ChatGPT", "GPT-3.5", "decapoda-research/llama-13b-hf"] + [f.name for f in model_dir.iterdir() if f.is_dir()]
tools_mappings = {
"klarna": "https://www.klarna.com/",
"weather": "http://127.0.0.1:8079/tools/weather/",
# "database": "http://127.0.0.1:8079/tools/database/",
# "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
# "wikidata": "http://127.0.0.1:8079/tools/kg/wikidata/",
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
"stock": "http://127.0.0.1:8079/tools/stock/",
"bing_map": "http://127.0.0.1:8079/tools/map.bing_map/",
# "baidu_map": "http://127.0.0.1:8079/tools/map/baidu_map/",
"zillow": "http://127.0.0.1:8079/tools/zillow/",
"airbnb": "http://127.0.0.1:8079/tools/airbnb/",
"job_search": "http://127.0.0.1:8079/tools/job_search/",
# "baidu-translation": "http://127.0.0.1:8079/tools/translation/baidu-translation/",
# "nllb-translation": "http://127.0.0.1:8079/tools/translation/nllb-translation/",
"tutorial": "http://127.0.0.1:8079/tools/tutorial/",
"file_operation": "http://127.0.0.1:8079/tools/file_operation/",
"meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
"code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
"arxiv": "http://127.0.0.1:8079/tools/arxiv/",
"google_places": "http://127.0.0.1:8079/tools/google_places/",
"google_serper": "http://127.0.0.1:8079/tools/google_serper/",
"google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
"python": "http://127.0.0.1:8079/tools/python/",
"sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
"shell": "http://127.0.0.1:8079/tools/shell/",
"image_generation": "http://127.0.0.1:8079/tools/image_generation/",
"hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
"gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
"travel": "http://127.0.0.1:8079/tools/travel",
"walmart": "http://127.0.0.1:8079/tools/walmart",
}
# data = json.load(open('swarms/tools/openai.json')) # Load the JSON file
# items = data['items'] # Get the list of items
# for plugin in items: # Iterate over items, not data
# url = plugin['manifest']['api']['url']
# tool_name = plugin['namespace']
# tools_mappings[tool_name] = url[:-len('/.well-known/openai.yaml')]
# print(tools_mappings)
valid_tools_info = []
all_tools_list = []
gr.close_all()
MAX_TURNS = 30
MAX_BOXES = MAX_TURNS * 2
return_msg = []
chat_history = ""
MAX_SLEEP_TIME = 40
def download_model(model_url: str, memory_utilization: int , model_dir: str):
model_name = model_url.split('/')[-1]
# Download the model using VLLM
vllm_model = VLLM(
model=model_url,
trust_remote_code=True,
gpu_memory_utilization=memory_utilization,
download_dir=model_dir
)
# Add the downloaded model to the available_models list
available_models.append((model_name, vllm_model))
# Update the dropdown choices with the new available_models list
model_chosen.update(choices=available_models)
valid_tools_info = {}
import gradio as gr
from swarms.tools.tools_controller import load_valid_tools, tools_mappings
def load_tools():
global valid_tools_info
global all_tools_list
try:
valid_tools_info = load_valid_tools(tools_mappings)
print(f"valid_tools_info: {valid_tools_info}") # Debugging line
except BaseException as e:
print(repr(e))
all_tools_list = sorted(list(valid_tools_info.keys()))
print(f"all_tools_list: {all_tools_list}") # Debugging line
return gr.update(choices=all_tools_list)
def set_environ(OPENAI_API_KEY: str = "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",
WOLFRAMALPH_APP_ID: str = "",
WEATHER_API_KEYS: str = "",
BING_SUBSCRIPT_KEY: str = "",
ALPHA_VANTAGE_KEY: str = "",
BING_MAP_KEY: str = "",
BAIDU_TRANSLATE_KEY: str = "",
RAPIDAPI_KEY: str = "",
SERPER_API_KEY: str = "",
GPLACES_API_KEY: str = "",
SCENEX_API_KEY: str = "",
STEAMSHIP_API_KEY: str = "",
HUGGINGFACE_API_KEY: str = "",
AMADEUS_ID: str = "",
AMADEUS_KEY: str = "",
AWS_ACCESS_KEY_ID: str = "",
AWS_SECRET_ACCESS_KEY: str = "",
AWS_DEFAULT_REGION: str = "",
):
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
os.environ["BING_MAP_KEY"] = BING_MAP_KEY
os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
os.environ["RAPIDAPI_KEY"] = RAPIDAPI_KEY
os.environ["SERPER_API_KEY"] = SERPER_API_KEY
os.environ["GPLACES_API_KEY"] = GPLACES_API_KEY
os.environ["SCENEX_API_KEY"] = SCENEX_API_KEY
os.environ["STEAMSHIP_API_KEY"] = STEAMSHIP_API_KEY
os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
os.environ["AMADEUS_ID"] = AMADEUS_ID
os.environ["AMADEUS_KEY"] = AMADEUS_KEY
os.environ["AWS_ACCESS_KEY_ID"] = AWS_ACCESS_KEY_ID
os.environ["AWS_SECRET_ACCESS_KEY"] = AWS_SECRET_ACCESS_KEY
os.environ["AWS_DEFAULT_REGION"] = AWS_DEFAULT_REGION
if not tool_server_flag:
start_tool_server()
time.sleep(MAX_SLEEP_TIME)
# Check if AWS keys are set and if so, configure AWS
if AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_DEFAULT_REGION:
try:
s3 = boto3.client('s3')
s3.list_buckets()
aws_status = "AWS setup successful"
except NoCredentialsError:
aws_status = "AWS setup failed: Invalid credentials"
else:
aws_status = "Keys set successfully"
return gr.update(value="OK!"), aws_status
def show_avatar_imgs(tools_chosen):
if len(tools_chosen) == 0:
tools_chosen = list(valid_tools_info.keys())
img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
imgs = ' '.join([img_template.format(img, img, tool) for img, tool in zip(imgs, tools_chosen)])
return [gr.update(value='<span class="">' + imgs + '</span>', visible=True), gr.update(visible=True)]
def answer_by_tools(question, tools_chosen, model_chosen):
global return_msg
return_msg += [(question, None), (None, '...')]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
tools_chosen = list(valid_tools_info.keys())
if len(tools_chosen) == 1:
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]],
prompt_type="react-with-tool-description", return_intermediate_steps=True)
else:
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(),
load_valid_tools({k: tools_mappings[k] for k in tools_chosen}),
stream_output=True, llm=model_chosen)
agent_executor = answerer.build_runner()
global chat_history
chat_history += "Question: " + question + "\n"
question = chat_history
for inter in agent_executor(question):
if isinstance(inter, AgentFinish): continue
result_str = []
return_msg.pop()
if isinstance(inter, dict):
result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
chat_history += "Answer:" + inter['output'] + "\n"
result_str.append("...")
else:
try:
not_observation = inter[0].log
except:
print(inter[0])
not_observation = inter[0]
if not not_observation.startswith('Thought:'):
not_observation = "Thought: " + not_observation
chat_history += not_observation
not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
result_str.append("{}".format(not_observation))
result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
chat_history += "\nAction output:" + inter[1] + "\n"
result_str.append("...")
return_msg += [(None, result) for result in result_str]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
return_msg.pop()
if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ",
"<font color=green>Final Answer:</font> "))
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
def retrieve(tools_search):
if tools_search == "":
return gr.update(choices=all_tools_list)
else:
url = "http://127.0.0.1:8079/retrieve"
param = {
"query": tools_search
}
response = requests.post(url, json=param)
result = response.json()
retrieved_tools = result["tools"]
return gr.update(choices=retrieved_tools)
def clear_retrieve():
return [gr.update(value=""), gr.update(choices=all_tools_list)]
def clear_history():
global return_msg
global chat_history
return_msg = []
chat_history = ""
yield gr.update(visible=True, value=return_msg)
# Add this function to fetch the tokenizer from the Hugging Face Model Hub API
def fetch_tokenizer(model_name: str):
response = requests.get(f"https://huggingface.co/{model_name}/resolve/main/tokenizer_config.json")
if response.status_code == 200:
tokenizer_config = response.json()
return tokenizer_config.get("tokenizer_class")
else:
return "Tokenizer not found for the selected model"
# Add this function to handle the button click
def deploy_on_sky_pilot(model_name: str, tokenizer: str, accelerators: str):
# Create serving.yaml for SkyPilot deployment
serving_yaml = {
"resources": {
"accelerators": accelerators
},
"envs": {
"MODEL_NAME": model_name,
"TOKENIZER": tokenizer
},
"setup": "conda create -n vllm python=3.9 -y\nconda activate vllm\ngit clone https://github.com/vllm-project/vllm.git\ncd vllm\npip install .\npip install gradio",
"run": "conda activate vllm\necho 'Starting vllm api server...'\npython -u -m vllm.entrypoints.api_server --model $MODEL_NAME --tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE --tokenizer $TOKENIZER 2>&1 | tee api_server.log &\necho 'Waiting for vllm api server to start...'\nwhile ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done\necho 'Starting gradio server...'\npython vllm/examples/gradio_webserver.py"
}
# Write serving.yaml to file
with open('serving.yaml', 'w') as f:
yaml.dump(serving_yaml, f)
# Deploy on SkyPilot
os.system("sky launch serving.yaml")
# Add this line where you define your Gradio interface
title = 'Swarm Models'
# css/js strings
css = ui.css
js = ui.js
css += apply_extensions('css')
js += apply_extensions('js')
# with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as demo:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=14):
gr.Markdown("")
with gr.Column(scale=1):
gr.Image(show_label=False, show_download_button=False, value="images/swarmslogobanner.png")
with gr.Tab("Key setting"):
OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
WOLFRAMALPH_APP_ID = gr.Textbox(label="Wolframalpha app id:", placeholder="Key to use wlframalpha", type="text")
WEATHER_API_KEYS = gr.Textbox(label="Weather api key:", placeholder="Key to use weather api", type="text")
BING_SUBSCRIPT_KEY = gr.Textbox(label="Bing subscript key:", placeholder="Key to use bing search", type="text")
ALPHA_VANTAGE_KEY = gr.Textbox(label="Stock api key:", placeholder="Key to use stock api", type="text")
BING_MAP_KEY = gr.Textbox(label="Bing map key:", placeholder="Key to use bing map", type="text")
BAIDU_TRANSLATE_KEY = gr.Textbox(label="Baidu translation key:", placeholder="Key to use baidu translation", type="text")
RAPIDAPI_KEY = gr.Textbox(label="Rapidapi key:", placeholder="Key to use zillow, airbnb and job search", type="text")
SERPER_API_KEY = gr.Textbox(label="Serper key:", placeholder="Key to use google serper and google scholar", type="text")
GPLACES_API_KEY = gr.Textbox(label="Google places key:", placeholder="Key to use google places", type="text")
SCENEX_API_KEY = gr.Textbox(label="Scenex api key:", placeholder="Key to use sceneXplain", type="text")
STEAMSHIP_API_KEY = gr.Textbox(label="Steamship api key:", placeholder="Key to use image generation", type="text")
HUGGINGFACE_API_KEY = gr.Textbox(label="Huggingface api key:", placeholder="Key to use models in huggingface hub", type="text")
AMADEUS_ID = gr.Textbox(label="Amadeus id:", placeholder="Id to use Amadeus", type="text")
AMADEUS_KEY = gr.Textbox(label="Amadeus key:", placeholder="Key to use Amadeus", type="text")
AWS_ACCESS_KEY_ID = gr.Textbox(label="AWS Access Key ID:", placeholder="AWS Access Key ID", type="text")
AWS_SECRET_ACCESS_KEY = gr.Textbox(label="AWS Secret Access Key:", placeholder="AWS Secret Access Key", type="text")
AWS_DEFAULT_REGION = gr.Textbox(label="AWS Default Region:", placeholder="AWS Default Region", type="text")
key_set_btn = gr.Button(value="Set keys!")
with gr.Tab("Chat with Tool"):
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.",
lines=1).style(container=False)
with gr.Column(scale=0.15, min_width=0):
buttonChat = gr.Button("Chat")
memory_utilization = gr.Slider(label="Memory Utilization:", min=0, max=1, step=0.1, default=0.5)
chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
buttonClear = gr.Button("Clear History")
buttonStop = gr.Button("Stop", visible=False)
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=1):
model_url = gr.Textbox(label="VLLM Model URL:", placeholder="URL to download VLLM model from Hugging Face", type="text");
buttonDownload = gr.Button("Download Model");
buttonDownload.click(fn=download_model, inputs=[model_url, memory_utilization]);
model_chosen = gr.Dropdown(
list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided",
info="Choose the model to solve your question, Default means ChatGPT."
)
with gr.Row():
tools_search = gr.Textbox(
lines=1,
label="Tools Search",
placeholder="Please input some text to search tools.",
)
buttonSearch = gr.Button("Reset search condition")
tools_chosen = gr.CheckboxGroup(
choices=all_tools_list,
# value=["chemical-prop"],
label="Tools provided",
info="Choose the tools to solve your question.",
)
tokenizer_output = gr.outputs.Textbox()
model_chosen.change(fetch_tokenizer, outputs=tokenizer_output)
available_accelerators = ["A100", "V100", "P100", "K80", "T4", "P4"]
accelerators = gr.Dropdown(available_accelerators, label="Accelerators:")
buttonDeploy = gr.Button("Deploy on SkyPilot")
buttonDeploy.click(deploy_on_sky_pilot, [model_chosen, tokenizer_output, accelerators])
# TODO finish integrating model flow
# with gr.Tab("model"):
# create_inferance();
# def serve_iframe():
# return f'hi'
# TODO fix webgl galaxy backgroun
# def serve_iframe():
# return "<iframe src='http://localhost:8000/shader.html' width='100%' height='400'></iframe>"
# iface = gr.Interface(fn=serve_iframe, inputs=[], outputs=gr.outputs.HTML())
key_set_btn.click(fn=set_environ, inputs=[
OPENAI_API_KEY,
WOLFRAMALPH_APP_ID,
WEATHER_API_KEYS,
BING_SUBSCRIPT_KEY,
ALPHA_VANTAGE_KEY,
BING_MAP_KEY,
BAIDU_TRANSLATE_KEY,
RAPIDAPI_KEY,
SERPER_API_KEY,
GPLACES_API_KEY,
SCENEX_API_KEY,
STEAMSHIP_API_KEY,
HUGGINGFACE_API_KEY,
AMADEUS_ID,
AMADEUS_KEY,
], outputs=key_set_btn)
key_set_btn.click(fn=load_tools, outputs=tools_chosen)
tools_search.change(retrieve, tools_search, tools_chosen)
buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])
txt.submit(lambda: [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [],
[txt, buttonClear, buttonStop])
inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
buttonChat.click(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
buttonStop.click(lambda: [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop],
cancels=[inference_event])
buttonClear.click(clear_history, [], chatbot)
# demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
demo.queue().launch()