You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
385 lines
16 KiB
385 lines
16 KiB
# ------------------------------------------------------------------------
|
|
# Grounding DINO
|
|
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# ------------------------------------------------------------------------
|
|
# Conditional DETR model and criterion classes.
|
|
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# ------------------------------------------------------------------------
|
|
# Modified from DETR (https://github.com/facebookresearch/detr)
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
# ------------------------------------------------------------------------
|
|
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
|
|
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
|
# ------------------------------------------------------------------------
|
|
import copy
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from groundingdino.util import get_tokenlizer
|
|
from groundingdino.util.misc import (
|
|
NestedTensor,
|
|
inverse_sigmoid,
|
|
nested_tensor_from_tensor_list,
|
|
)
|
|
|
|
from ..registry import MODULE_BUILD_FUNCS
|
|
from .backbone import build_backbone
|
|
from .bertwarper import (
|
|
BertModelWarper,
|
|
generate_masks_with_special_tokens_and_transfer_map,
|
|
)
|
|
from .transformer import build_transformer
|
|
from .utils import MLP, ContrastiveEmbed
|
|
|
|
|
|
class GroundingDINO(nn.Module):
|
|
"""This is the Cross-Attention Detector module that performs object detection"""
|
|
|
|
def __init__(
|
|
self,
|
|
backbone,
|
|
transformer,
|
|
num_queries,
|
|
aux_loss=False,
|
|
iter_update=False,
|
|
query_dim=2,
|
|
num_feature_levels=1,
|
|
nheads=8,
|
|
# two stage
|
|
two_stage_type="no", # ['no', 'standard']
|
|
dec_pred_bbox_embed_share=True,
|
|
two_stage_class_embed_share=True,
|
|
two_stage_bbox_embed_share=True,
|
|
num_patterns=0,
|
|
dn_number=100,
|
|
dn_box_noise_scale=0.4,
|
|
dn_label_noise_ratio=0.5,
|
|
dn_labelbook_size=100,
|
|
text_encoder_type="bert-base-uncased",
|
|
sub_sentence_present=True,
|
|
max_text_len=256,
|
|
):
|
|
"""Initializes the model.
|
|
Parameters:
|
|
backbone: torch module of the backbone to be used. See backbone.py
|
|
transformer: torch module of the transformer architecture. See transformer.py
|
|
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
|
Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
|
|
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
|
"""
|
|
super().__init__()
|
|
self.num_queries = num_queries
|
|
self.transformer = transformer
|
|
self.hidden_dim = hidden_dim = transformer.d_model
|
|
self.num_feature_levels = num_feature_levels
|
|
self.nheads = nheads
|
|
self.max_text_len = 256
|
|
self.sub_sentence_present = sub_sentence_present
|
|
|
|
# setting query dim
|
|
self.query_dim = query_dim
|
|
assert query_dim == 4
|
|
|
|
# for dn training
|
|
self.num_patterns = num_patterns
|
|
self.dn_number = dn_number
|
|
self.dn_box_noise_scale = dn_box_noise_scale
|
|
self.dn_label_noise_ratio = dn_label_noise_ratio
|
|
self.dn_labelbook_size = dn_labelbook_size
|
|
|
|
# bert
|
|
self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
|
|
self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
|
|
self.bert.pooler.dense.weight.requires_grad_(False)
|
|
self.bert.pooler.dense.bias.requires_grad_(False)
|
|
self.bert = BertModelWarper(bert_model=self.bert)
|
|
|
|
self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
|
|
nn.init.constant_(self.feat_map.bias.data, 0)
|
|
nn.init.xavier_uniform_(self.feat_map.weight.data)
|
|
# freeze
|
|
|
|
# special tokens
|
|
self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
|
|
|
|
# prepare input projection layers
|
|
if num_feature_levels > 1:
|
|
num_backbone_outs = len(backbone.num_channels)
|
|
input_proj_list = []
|
|
for _ in range(num_backbone_outs):
|
|
in_channels = backbone.num_channels[_]
|
|
input_proj_list.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
|
|
nn.GroupNorm(32, hidden_dim),
|
|
)
|
|
)
|
|
for _ in range(num_feature_levels - num_backbone_outs):
|
|
input_proj_list.append(
|
|
nn.Sequential(
|
|
nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
|
|
nn.GroupNorm(32, hidden_dim),
|
|
)
|
|
)
|
|
in_channels = hidden_dim
|
|
self.input_proj = nn.ModuleList(input_proj_list)
|
|
else:
|
|
assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
|
|
self.input_proj = nn.ModuleList(
|
|
[
|
|
nn.Sequential(
|
|
nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
|
|
nn.GroupNorm(32, hidden_dim),
|
|
)
|
|
]
|
|
)
|
|
|
|
self.backbone = backbone
|
|
self.aux_loss = aux_loss
|
|
self.box_pred_damping = None
|
|
|
|
self.iter_update = iter_update
|
|
assert iter_update, "Why not iter_update?"
|
|
|
|
# prepare pred layers
|
|
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
|
|
# prepare class & box embed
|
|
_class_embed = ContrastiveEmbed()
|
|
|
|
_bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
|
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
|
|
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
|
|
|
|
if dec_pred_bbox_embed_share:
|
|
box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
|
|
else:
|
|
box_embed_layerlist = [
|
|
copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)
|
|
]
|
|
class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
|
|
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
|
|
self.class_embed = nn.ModuleList(class_embed_layerlist)
|
|
self.transformer.decoder.bbox_embed = self.bbox_embed
|
|
self.transformer.decoder.class_embed = self.class_embed
|
|
|
|
# two stage
|
|
self.two_stage_type = two_stage_type
|
|
assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
|
|
two_stage_type
|
|
)
|
|
if two_stage_type != "no":
|
|
if two_stage_bbox_embed_share:
|
|
assert dec_pred_bbox_embed_share
|
|
self.transformer.enc_out_bbox_embed = _bbox_embed
|
|
else:
|
|
self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
|
|
|
|
if two_stage_class_embed_share:
|
|
assert dec_pred_bbox_embed_share
|
|
self.transformer.enc_out_class_embed = _class_embed
|
|
else:
|
|
self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
|
|
|
|
self.refpoint_embed = None
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
# init input_proj
|
|
for proj in self.input_proj:
|
|
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
|
nn.init.constant_(proj[0].bias, 0)
|
|
|
|
def init_ref_points(self, use_num_queries):
|
|
self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
|
|
|
|
def forward(self, samples: NestedTensor, targets: List = None, **kw):
|
|
"""The forward expects a NestedTensor, which consists of:
|
|
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
|
|
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
|
|
|
|
It returns a dict with the following elements:
|
|
- "pred_logits": the classification logits (including no-object) for all queries.
|
|
Shape= [batch_size x num_queries x num_classes]
|
|
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
|
|
(center_x, center_y, width, height). These values are normalized in [0, 1],
|
|
relative to the size of each individual image (disregarding possible padding).
|
|
See PostProcess for information on how to retrieve the unnormalized bounding box.
|
|
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
|
|
dictionnaries containing the two above keys for each decoder layer.
|
|
"""
|
|
if targets is None:
|
|
captions = kw["captions"]
|
|
else:
|
|
captions = [t["caption"] for t in targets]
|
|
|
|
# encoder texts
|
|
tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
|
|
samples.device
|
|
)
|
|
(
|
|
text_self_attention_masks,
|
|
position_ids,
|
|
cate_to_token_mask_list,
|
|
) = generate_masks_with_special_tokens_and_transfer_map(
|
|
tokenized, self.specical_tokens, self.tokenizer
|
|
)
|
|
|
|
if text_self_attention_masks.shape[1] > self.max_text_len:
|
|
text_self_attention_masks = text_self_attention_masks[
|
|
:, : self.max_text_len, : self.max_text_len
|
|
]
|
|
position_ids = position_ids[:, : self.max_text_len]
|
|
tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
|
|
tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
|
|
tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
|
|
|
|
# extract text embeddings
|
|
if self.sub_sentence_present:
|
|
tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
|
|
tokenized_for_encoder["attention_mask"] = text_self_attention_masks
|
|
tokenized_for_encoder["position_ids"] = position_ids
|
|
else:
|
|
# import ipdb; ipdb.set_trace()
|
|
tokenized_for_encoder = tokenized
|
|
|
|
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
|
|
|
encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
|
|
text_token_mask = tokenized.attention_mask.bool() # bs, 195
|
|
# text_token_mask: True for nomask, False for mask
|
|
# text_self_attention_masks: True for nomask, False for mask
|
|
|
|
if encoded_text.shape[1] > self.max_text_len:
|
|
encoded_text = encoded_text[:, : self.max_text_len, :]
|
|
text_token_mask = text_token_mask[:, : self.max_text_len]
|
|
position_ids = position_ids[:, : self.max_text_len]
|
|
text_self_attention_masks = text_self_attention_masks[
|
|
:, : self.max_text_len, : self.max_text_len
|
|
]
|
|
|
|
text_dict = {
|
|
"encoded_text": encoded_text, # bs, 195, d_model
|
|
"text_token_mask": text_token_mask, # bs, 195
|
|
"position_ids": position_ids, # bs, 195
|
|
"text_self_attention_masks": text_self_attention_masks, # bs, 195,195
|
|
}
|
|
|
|
# import ipdb; ipdb.set_trace()
|
|
|
|
if isinstance(samples, (list, torch.Tensor)):
|
|
samples = nested_tensor_from_tensor_list(samples)
|
|
features, poss = self.backbone(samples)
|
|
|
|
srcs = []
|
|
masks = []
|
|
for l, feat in enumerate(features):
|
|
src, mask = feat.decompose()
|
|
srcs.append(self.input_proj[l](src))
|
|
masks.append(mask)
|
|
assert mask is not None
|
|
if self.num_feature_levels > len(srcs):
|
|
_len_srcs = len(srcs)
|
|
for l in range(_len_srcs, self.num_feature_levels):
|
|
if l == _len_srcs:
|
|
src = self.input_proj[l](features[-1].tensors)
|
|
else:
|
|
src = self.input_proj[l](srcs[-1])
|
|
m = samples.mask
|
|
mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
|
|
pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
|
|
srcs.append(src)
|
|
masks.append(mask)
|
|
poss.append(pos_l)
|
|
|
|
input_query_bbox = input_query_label = attn_mask = None
|
|
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
|
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
|
|
)
|
|
|
|
# deformable-detr-like anchor update
|
|
outputs_coord_list = []
|
|
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
|
zip(reference[:-1], self.bbox_embed, hs)
|
|
):
|
|
layer_delta_unsig = layer_bbox_embed(layer_hs)
|
|
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
|
|
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
|
|
outputs_coord_list.append(layer_outputs_unsig)
|
|
outputs_coord_list = torch.stack(outputs_coord_list)
|
|
|
|
# output
|
|
outputs_class = torch.stack(
|
|
[
|
|
layer_cls_embed(layer_hs, text_dict)
|
|
for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
|
|
]
|
|
)
|
|
out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
|
|
|
|
# # for intermediate outputs
|
|
# if self.aux_loss:
|
|
# out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
|
|
|
|
# # for encoder output
|
|
# if hs_enc is not None:
|
|
# # prepare intermediate outputs
|
|
# interm_coord = ref_enc[-1]
|
|
# interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
|
|
# out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
|
|
# out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
|
|
|
|
return out
|
|
|
|
@torch.jit.unused
|
|
def _set_aux_loss(self, outputs_class, outputs_coord):
|
|
# this is a workaround to make torchscript happy, as torchscript
|
|
# doesn't support dictionary with non-homogeneous values, such
|
|
# as a dict having both a Tensor and a list.
|
|
return [
|
|
{"pred_logits": a, "pred_boxes": b}
|
|
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
|
|
]
|
|
|
|
|
|
@MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
|
|
def build_groundingdino(args):
|
|
|
|
backbone = build_backbone(args)
|
|
transformer = build_transformer(args)
|
|
|
|
dn_labelbook_size = args.dn_labelbook_size
|
|
dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
|
|
sub_sentence_present = args.sub_sentence_present
|
|
|
|
model = GroundingDINO(
|
|
backbone,
|
|
transformer,
|
|
num_queries=args.num_queries,
|
|
aux_loss=True,
|
|
iter_update=True,
|
|
query_dim=4,
|
|
num_feature_levels=args.num_feature_levels,
|
|
nheads=args.nheads,
|
|
dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
|
|
two_stage_type=args.two_stage_type,
|
|
two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
|
|
two_stage_class_embed_share=args.two_stage_class_embed_share,
|
|
num_patterns=args.num_patterns,
|
|
dn_number=0,
|
|
dn_box_noise_scale=args.dn_box_noise_scale,
|
|
dn_label_noise_ratio=args.dn_label_noise_ratio,
|
|
dn_labelbook_size=dn_labelbook_size,
|
|
text_encoder_type=args.text_encoder_type,
|
|
sub_sentence_present=sub_sentence_present,
|
|
max_text_len=args.max_text_len,
|
|
)
|
|
|
|
return model
|