You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/new_features_examples/unique_swarms_examples.py

307 lines
9.0 KiB

import asyncio
from typing import List
from swarms.structs.agent import Agent
from swarms.structs.swarming_architectures import (
broadcast,
circular_swarm,
exponential_swarm,
fibonacci_swarm,
grid_swarm,
linear_swarm,
mesh_swarm,
one_to_three,
prime_swarm,
sigmoid_swarm,
sinusoidal_swarm,
staircase_swarm,
star_swarm,
)
def create_finance_agents() -> List[Agent]:
"""Create specialized finance agents"""
return [
Agent(
agent_name="MarketAnalyst",
system_prompt="You are a market analysis expert. Analyze market trends and provide insights.",
model_name="gpt-4o-mini",
),
Agent(
agent_name="RiskManager",
system_prompt="You are a risk management specialist. Evaluate risks and provide mitigation strategies.",
model_name="gpt-4o-mini",
),
Agent(
agent_name="PortfolioManager",
system_prompt="You are a portfolio management expert. Optimize investment portfolios and asset allocation.",
model_name="gpt-4o-mini",
),
Agent(
agent_name="ComplianceOfficer",
system_prompt="You are a financial compliance expert. Ensure regulatory compliance and identify issues.",
model_name="gpt-4o-mini",
),
]
def create_healthcare_agents() -> List[Agent]:
"""Create specialized healthcare agents"""
return [
Agent(
agent_name="Diagnostician",
system_prompt="You are a medical diagnostician. Analyze symptoms and suggest potential diagnoses.",
model_name="gpt-4o-mini",
),
Agent(
agent_name="Treatment_Planner",
system_prompt="You are a treatment planning specialist. Develop comprehensive treatment plans.",
model_name="gpt-4o-mini",
),
Agent(
agent_name="MedicalResearcher",
system_prompt="You are a medical researcher. Analyze latest research and provide evidence-based recommendations.",
model_name="gpt-4o-mini",
),
Agent(
agent_name="PatientCareCoordinator",
system_prompt="You are a patient care coordinator. Manage patient care workflow and coordination.",
model_name="gpt-4o-mini",
),
]
def print_separator():
print("\n" + "=" * 50 + "\n")
def run_finance_circular_swarm():
"""Investment analysis workflow using circular swarm"""
print_separator()
print("FINANCE - INVESTMENT ANALYSIS (Circular Swarm)")
agents = create_finance_agents()
tasks = [
"Analyze Tesla stock performance for Q4 2024",
"Assess market risks and potential hedging strategies",
"Recommend portfolio adjustments based on analysis",
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = circular_swarm(agents, tasks)
print("\nResults:")
for log in result["history"]:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_healthcare_grid_swarm():
"""Patient diagnosis and treatment planning using grid swarm"""
print_separator()
print("HEALTHCARE - PATIENT DIAGNOSIS (Grid Swarm)")
agents = create_healthcare_agents()
tasks = [
"Review patient symptoms: fever, fatigue, joint pain",
"Research latest treatment protocols",
"Develop preliminary treatment plan",
"Coordinate with specialists",
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = grid_swarm(agents, tasks)
print("\nGrid swarm processing completed")
print(result)
def run_finance_linear_swarm():
"""Loan approval process using linear swarm"""
print_separator()
print("FINANCE - LOAN APPROVAL PROCESS (Linear Swarm)")
agents = create_finance_agents()[:3]
tasks = [
"Review loan application and credit history",
"Assess risk factors and compliance requirements",
"Generate final loan recommendation",
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = linear_swarm(agents, tasks)
print("\nResults:")
for log in result["history"]:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_healthcare_star_swarm():
"""Complex medical case management using star swarm"""
print_separator()
print("HEALTHCARE - COMPLEX CASE MANAGEMENT (Star Swarm)")
agents = create_healthcare_agents()
tasks = [
"Complex case: Patient with multiple chronic conditions",
"Develop integrated care plan",
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = star_swarm(agents, tasks)
print("\nResults:")
for log in result["history"]:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_finance_mesh_swarm():
"""Market risk assessment using mesh swarm"""
print_separator()
print("FINANCE - MARKET RISK ASSESSMENT (Mesh Swarm)")
agents = create_finance_agents()
tasks = [
"Analyze global market conditions",
"Assess currency exchange risks",
"Evaluate sector-specific risks",
"Review portfolio exposure",
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = mesh_swarm(agents, tasks)
print("\nResults:")
for log in result["history"]:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_mathematical_finance_swarms():
"""Complex financial analysis using mathematical swarms"""
print_separator()
print("FINANCE - MARKET PATTERN ANALYSIS")
agents = create_finance_agents()
tasks = [
"Analyze historical market patterns",
"Predict market trends using technical analysis",
"Identify potential arbitrage opportunities",
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
print("\nFibonacci Swarm Results:")
result = fibonacci_swarm(agents, tasks.copy())
print(result)
print("\nPrime Swarm Results:")
result = prime_swarm(agents, tasks.copy())
print(result)
print("\nExponential Swarm Results:")
result = exponential_swarm(agents, tasks.copy())
print(result)
def run_healthcare_pattern_swarms():
"""Patient monitoring using pattern swarms"""
print_separator()
print("HEALTHCARE - PATIENT MONITORING PATTERNS")
agents = create_healthcare_agents()
task = "Monitor and analyze patient vital signs: BP, heart rate, temperature, O2 saturation"
print(f"\nTask: {task}")
print("\nStaircase Pattern Analysis:")
result = staircase_swarm(agents, task)
print(result)
print("\nSigmoid Pattern Analysis:")
result = sigmoid_swarm(agents, task)
print(result)
print("\nSinusoidal Pattern Analysis:")
result = sinusoidal_swarm(agents, task)
print(result)
async def run_communication_examples():
"""Communication patterns for emergency scenarios"""
print_separator()
print("EMERGENCY COMMUNICATION PATTERNS")
# Finance market alert
finance_sender = create_finance_agents()[0]
finance_receivers = create_finance_agents()[1:]
market_alert = "URGENT: Major market volatility detected - immediate risk assessment required"
print("\nFinance Market Alert:")
print(f"Alert: {market_alert}")
result = await broadcast(
finance_sender, finance_receivers, market_alert
)
print("\nBroadcast Results:")
for log in result["history"]:
print(f"\n{log['agent_name']}:")
print(f"Response: {log['response']}")
# Healthcare emergency
health_sender = create_healthcare_agents()[0]
health_receivers = create_healthcare_agents()[1:4]
emergency_case = "EMERGENCY: Trauma patient with multiple injuries - immediate consultation required"
print("\nHealthcare Emergency:")
print(f"Case: {emergency_case}")
result = await one_to_three(
health_sender, health_receivers, emergency_case
)
print("\nConsultation Results:")
for log in result["history"]:
print(f"\n{log['agent_name']}:")
print(f"Response: {log['response']}")
async def run_all_examples():
"""Execute all swarm examples"""
print("\n=== SWARM ARCHITECTURE EXAMPLES ===\n")
# Finance examples
run_finance_circular_swarm()
run_finance_linear_swarm()
run_finance_mesh_swarm()
run_mathematical_finance_swarms()
# Healthcare examples
run_healthcare_grid_swarm()
run_healthcare_star_swarm()
run_healthcare_pattern_swarms()
# Communication examples
await run_communication_examples()
print("\n=== ALL EXAMPLES COMPLETED ===")
if __name__ == "__main__":
asyncio.run(run_all_examples())