You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/app.py

391 lines
17 KiB

import os
import time
from functools import partial
from pathlib import Path
from threading import Lock
import warnings
from swarms.modelui.modules.block_requests import OpenMonkeyPatch, RequestBlocker
from swarms.modelui.modules.logging_colors import logger
from vllm import LLM
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings('ignore', category=UserWarning, message='Using the update method is deprecated')
warnings.filterwarnings('ignore', category=UserWarning, message='Field "model_name" has conflict')
with RequestBlocker():
import gradio as gr
import matplotlib
matplotlib.use('Agg') # This fixes LaTeX rendering on some systems
import swarms.modelui.modules.extensions as extensions_module
from swarms.modelui.modules import (
chat,
shared,
training,
ui,
ui_chat,
ui_default,
ui_file_saving,
ui_model_menu,
ui_notebook,
ui_parameters,
ui_session,
utils
)
from swarms.modelui.modules.extensions import apply_extensions
from swarms.modelui.modules.LoRA import add_lora_to_model
from swarms.modelui.modules.models import load_model
from swarms.modelui.modules.models_settings import (
get_fallback_settings,
get_model_metadata,
update_model_parameters
)
from swarms.modelui.modules.utils import gradio
import gradio as gr
from swarms.tools.tools_controller import MTQuestionAnswerer, load_valid_tools
from swarms.tools.singletool import STQuestionAnswerer
from langchain.schema import AgentFinish
import requests
from swarms.modelui.server import create_interface
from tool_server import run_tool_server
from threading import Thread
from multiprocessing import Process
import time
from langchain.llms import VLLM
tool_server_flag = False
def start_tool_server():
# server = Thread(target=run_tool_server)
server = Process(target=run_tool_server)
server.start()
global tool_server_flag
tool_server_flag = True
available_models = ["ChatGPT", "GPT-3.5"]
DEFAULTMODEL = "ChatGPT" # "GPT-3.5"
tools_mappings = {
"klarna": "https://www.klarna.com/",
"weather": "http://127.0.0.1:8079/tools/weather/",
# "database": "http://127.0.0.1:8079/tools/database/",
# "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
# "wikidata": "http://127.0.0.1:8079/tools/kg/wikidata/",
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
"stock": "http://127.0.0.1:8079/tools/stock/",
"bing_map": "http://127.0.0.1:8079/tools/map.bing_map/",
# "baidu_map": "http://127.0.0.1:8079/tools/map/baidu_map/",
"zillow": "http://127.0.0.1:8079/tools/zillow/",
"airbnb": "http://127.0.0.1:8079/tools/airbnb/",
"job_search": "http://127.0.0.1:8079/tools/job_search/",
# "baidu-translation": "http://127.0.0.1:8079/tools/translation/baidu-translation/",
# "nllb-translation": "http://127.0.0.1:8079/tools/translation/nllb-translation/",
"tutorial": "http://127.0.0.1:8079/tools/tutorial/",
"file_operation": "http://127.0.0.1:8079/tools/file_operation/",
"meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
"code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
"arxiv": "http://127.0.0.1:8079/tools/arxiv/",
"google_places": "http://127.0.0.1:8079/tools/google_places/",
"google_serper": "http://127.0.0.1:8079/tools/google_serper/",
"google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
"python": "http://127.0.0.1:8079/tools/python/",
"sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
"shell": "http://127.0.0.1:8079/tools/shell/",
"image_generation": "http://127.0.0.1:8079/tools/image_generation/",
"hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
"gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
"travel": "http://127.0.0.1:8079/tools/travel",
"walmart": "http://127.0.0.1:8079/tools/walmart",
}
valid_tools_info = []
all_tools_list = []
gr.close_all()
MAX_TURNS = 30
MAX_BOXES = MAX_TURNS * 2
return_msg = []
chat_history = ""
MAX_SLEEP_TIME = 40
def download_model(model_url: str):
# Extract model name from the URL
model_name = model_url.split('/')[-1]
# response = requests.get(model_url, stream=True)
# total_size = int(response.headers.get('content-length', 0))
# block_size = 1024 #1 Kibibyte
# progress_bar = gr.outputs.Progress_Bar(total_size)
# model_data = b""
# for data in response.iter_content(block_size):
# model_data += data
# progress_bar.update(len(data))
# yield progress_bar
# Save the model data to a file, or load it into a model here
vllm_model = LLM(
model=model_url,
trust_remote_code=True,
device="cuda",
)
available_models.append((model_name, vllm_model))
return gr.update(choices=available_models)
def load_tools():
global valid_tools_info
global all_tools_list
try:
valid_tools_info = load_valid_tools(tools_mappings)
except BaseException as e:
print(repr(e))
all_tools_list = sorted(list(valid_tools_info.keys()))
return gr.update(choices=all_tools_list)
def set_environ(OPENAI_API_KEY: str = "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",
WOLFRAMALPH_APP_ID: str = "",
WEATHER_API_KEYS: str = "",
BING_SUBSCRIPT_KEY: str = "",
ALPHA_VANTAGE_KEY: str = "",
BING_MAP_KEY: str = "",
BAIDU_TRANSLATE_KEY: str = "",
RAPIDAPI_KEY: str = "",
SERPER_API_KEY: str = "",
GPLACES_API_KEY: str = "",
SCENEX_API_KEY: str = "",
STEAMSHIP_API_KEY: str = "",
HUGGINGFACE_API_KEY: str = "",
AMADEUS_ID: str = "",
AMADEUS_KEY: str = "",
VLLM_MODEL_URL: str = ""):
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
os.environ["BING_MAP_KEY"] = BING_MAP_KEY
os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
os.environ["RAPIDAPI_KEY"] = RAPIDAPI_KEY
os.environ["SERPER_API_KEY"] = SERPER_API_KEY
os.environ["GPLACES_API_KEY"] = GPLACES_API_KEY
os.environ["SCENEX_API_KEY"] = SCENEX_API_KEY
os.environ["STEAMSHIP_API_KEY"] = STEAMSHIP_API_KEY
os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
os.environ["AMADEUS_ID"] = AMADEUS_ID
os.environ["AMADEUS_KEY"] = AMADEUS_KEY
if not tool_server_flag:
start_tool_server()
time.sleep(MAX_SLEEP_TIME)
return gr.update(value="OK!")
def show_avatar_imgs(tools_chosen):
if len(tools_chosen) == 0:
tools_chosen = list(valid_tools_info.keys())
img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
imgs = ' '.join([img_template.format(img, img, tool) for img, tool in zip(imgs, tools_chosen)])
return [gr.update(value='<span class="">' + imgs + '</span>', visible=True), gr.update(visible=True)]
def answer_by_tools(question, tools_chosen, model_chosen):
global return_msg
return_msg += [(question, None), (None, '...')]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
tools_chosen = list(valid_tools_info.keys())
if len(tools_chosen) == 1:
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]],
prompt_type="react-with-tool-description", return_intermediate_steps=True)
else:
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(),
load_valid_tools({k: tools_mappings[k] for k in tools_chosen}),
stream_output=True, llm=model_chosen)
agent_executor = answerer.build_runner()
global chat_history
chat_history += "Question: " + question + "\n"
question = chat_history
for inter in agent_executor(question):
if isinstance(inter, AgentFinish): continue
result_str = []
return_msg.pop()
if isinstance(inter, dict):
result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
chat_history += "Answer:" + inter['output'] + "\n"
result_str.append("...")
else:
try:
not_observation = inter[0].log
except:
print(inter[0])
not_observation = inter[0]
if not not_observation.startswith('Thought:'):
not_observation = "Thought: " + not_observation
chat_history += not_observation
not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
result_str.append("{}".format(not_observation))
result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
chat_history += "\nAction output:" + inter[1] + "\n"
result_str.append("...")
return_msg += [(None, result) for result in result_str]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
return_msg.pop()
if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ",
"<font color=green>Final Answer:</font> "))
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
def retrieve(tools_search):
if tools_search == "":
return gr.update(choices=all_tools_list)
else:
url = "http://127.0.0.1:8079/retrieve"
param = {
"query": tools_search
}
response = requests.post(url, json=param)
result = response.json()
retrieved_tools = result["tools"]
return gr.update(choices=retrieved_tools)
def clear_retrieve():
return [gr.update(value=""), gr.update(choices=all_tools_list)]
def clear_history():
global return_msg
global chat_history
return_msg = []
chat_history = ""
yield gr.update(visible=True, value=return_msg)
title = 'Swarm Models'
# css/js strings
css = ui.css
js = ui.js
css += apply_extensions('css')
js += apply_extensions('js')
# with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as demo:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=14):
gr.Markdown("")
with gr.Column(scale=1):
gr.Image(show_label=False, show_download_button=False, value="images/swarmslogobanner.png")
with gr.Tab("Key setting"):
OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
WOLFRAMALPH_APP_ID = gr.Textbox(label="Wolframalpha app id:", placeholder="Key to use wlframalpha", type="text")
WEATHER_API_KEYS = gr.Textbox(label="Weather api key:", placeholder="Key to use weather api", type="text")
BING_SUBSCRIPT_KEY = gr.Textbox(label="Bing subscript key:", placeholder="Key to use bing search", type="text")
ALPHA_VANTAGE_KEY = gr.Textbox(label="Stock api key:", placeholder="Key to use stock api", type="text")
BING_MAP_KEY = gr.Textbox(label="Bing map key:", placeholder="Key to use bing map", type="text")
BAIDU_TRANSLATE_KEY = gr.Textbox(label="Baidu translation key:", placeholder="Key to use baidu translation", type="text")
RAPIDAPI_KEY = gr.Textbox(label="Rapidapi key:", placeholder="Key to use zillow, airbnb and job search", type="text")
SERPER_API_KEY = gr.Textbox(label="Serper key:", placeholder="Key to use google serper and google scholar", type="text")
GPLACES_API_KEY = gr.Textbox(label="Google places key:", placeholder="Key to use google places", type="text")
SCENEX_API_KEY = gr.Textbox(label="Scenex api key:", placeholder="Key to use sceneXplain", type="text")
STEAMSHIP_API_KEY = gr.Textbox(label="Steamship api key:", placeholder="Key to use image generation", type="text")
HUGGINGFACE_API_KEY = gr.Textbox(label="Huggingface api key:", placeholder="Key to use models in huggingface hub", type="text")
AMADEUS_ID = gr.Textbox(label="Amadeus id:", placeholder="Id to use Amadeus", type="text")
AMADEUS_KEY = gr.Textbox(label="Amadeus key:", placeholder="Key to use Amadeus", type="text")
key_set_btn = gr.Button(value="Set keys!")
with gr.Tab("Chat with Tool"):
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.",
lines=1).style(container=False)
with gr.Column(scale=0.15, min_width=0):
buttonChat = gr.Button("Chat")
CUDA_DEVICE = gr.Checkbox(label="CUDA Device:", placeholder="Enter CUDA device number", type="text")
MEMORY_UTILIZATION = gr.Slider(label="Memory Utilization:", min=0, max=1, step=0.1, default=0.5)
chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
buttonClear = gr.Button("Clear History")
buttonStop = gr.Button("Stop", visible=False)
with gr.Column(scale=1):
model_url = gr.Textbox(label="VLLM Model URL:", placeholder="URL to download VLLM model from Hugging Face", type="text");
buttonDownload = gr.Button("Download Model");
buttonDownload.click(fn=download_model, inputs=[model_url]);
model_chosen = gr.Dropdown(
list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided",
info="Choose the model to solve your question, Default means ChatGPT."
)
with gr.Row():
tools_search = gr.Textbox(
lines=1,
label="Tools Search",
placeholder="Please input some text to search tools.",
)
buttonSearch = gr.Button("Reset search condition")
tools_chosen = gr.CheckboxGroup(
choices=all_tools_list,
value=["chemical-prop"],
label="Tools provided",
info="Choose the tools to solve your question.",
)
key_set_btn.click(fn=set_environ, inputs=[
OPENAI_API_KEY,
WOLFRAMALPH_APP_ID,
WEATHER_API_KEYS,
BING_SUBSCRIPT_KEY,
ALPHA_VANTAGE_KEY,
BING_MAP_KEY,
BAIDU_TRANSLATE_KEY,
RAPIDAPI_KEY,
SERPER_API_KEY,
GPLACES_API_KEY,
SCENEX_API_KEY,
STEAMSHIP_API_KEY,
HUGGINGFACE_API_KEY,
AMADEUS_ID,
AMADEUS_KEY,
], outputs=key_set_btn)
key_set_btn.click(fn=load_tools, outputs=tools_chosen)
tools_search.change(retrieve, tools_search, tools_chosen)
buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])
txt.submit(lambda: [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [],
[txt, buttonClear, buttonStop])
inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
buttonChat.click(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
buttonStop.click(lambda: [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop],
cancels=[inference_event])
buttonClear.click(clear_history, [], chatbot)
# demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
demo.queue().launch()