You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
9.8 KiB
297 lines
9.8 KiB
import logging
|
|
|
|
import torch
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
from termcolor import colored
|
|
|
|
|
|
class HuggingfaceLLM:
|
|
"""
|
|
A class for running inference on a given model.
|
|
|
|
Attributes:
|
|
model_id (str): The ID of the model.
|
|
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
|
max_length (int): The maximum length of the output sequence.
|
|
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
|
quantization_config (dict, optional): The configuration for quantization.
|
|
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
|
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
|
|
|
# Usage
|
|
```
|
|
from swarms.models import HuggingfaceLLM
|
|
|
|
model_id = "gpt2-small"
|
|
inference = HuggingfaceLLM(model_id=model_id)
|
|
|
|
task = "Once upon a time"
|
|
generated_text = inference(task)
|
|
print(generated_text)
|
|
```
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
device: str = None,
|
|
max_length: int = 500,
|
|
quantize: bool = False,
|
|
quantization_config: dict = None,
|
|
verbose=False,
|
|
# logger=None,
|
|
distributed=False,
|
|
decoding=False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.logger = logging.getLogger(__name__)
|
|
self.device = (
|
|
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
|
)
|
|
self.model_id = model_id
|
|
self.max_length = max_length
|
|
self.verbose = verbose
|
|
self.distributed = distributed
|
|
self.decoding = decoding
|
|
self.model, self.tokenizer = None, None
|
|
|
|
if self.distributed:
|
|
assert (
|
|
torch.cuda.device_count() > 1
|
|
), "You need more than 1 gpu for distributed processing"
|
|
|
|
bnb_config = None
|
|
if quantize:
|
|
if not quantization_config:
|
|
quantization_config = {
|
|
"load_in_4bit": True,
|
|
"bnb_4bit_use_double_quant": True,
|
|
"bnb_4bit_quant_type": "nf4",
|
|
"bnb_4bit_compute_dtype": torch.bfloat16,
|
|
}
|
|
bnb_config = BitsAndBytesConfig(**quantization_config)
|
|
|
|
try:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, quantization_config=bnb_config
|
|
)
|
|
|
|
self.model # .to(self.device)
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
|
raise
|
|
|
|
def load_model(self):
|
|
"""Load the model"""
|
|
if not self.model or not self.tokenizer:
|
|
try:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
|
|
|
bnb_config = (
|
|
BitsAndBytesConfig(**self.quantization_config)
|
|
if self.quantization_config
|
|
else None
|
|
)
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, quantization_config=bnb_config
|
|
).to(self.device)
|
|
|
|
if self.distributed:
|
|
self.model = DDP(self.model)
|
|
except Exception as error:
|
|
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
|
raise
|
|
|
|
def run(self, task: str):
|
|
"""
|
|
Generate a response based on the prompt text.
|
|
|
|
Args:
|
|
- task (str): Text to prompt the model.
|
|
- max_length (int): Maximum length of the response.
|
|
|
|
Returns:
|
|
- Generated text (str).
|
|
"""
|
|
self.load_model()
|
|
|
|
max_length = self.max_length
|
|
|
|
self.print_dashboard(task)
|
|
|
|
try:
|
|
inputs = self.tokenizer.encode(task, return_tensors="pt").to(self.device)
|
|
|
|
# self.log.start()
|
|
|
|
if self.decoding:
|
|
with torch.no_grad():
|
|
for _ in range(max_length):
|
|
output_sequence = []
|
|
|
|
outputs = self.model.generate(
|
|
inputs, max_length=len(inputs) + 1, do_sample=True
|
|
)
|
|
output_tokens = outputs[0][-1]
|
|
output_sequence.append(output_tokens.item())
|
|
|
|
# print token in real-time
|
|
print(
|
|
self.tokenizer.decode(
|
|
[output_tokens], skip_special_tokens=True
|
|
),
|
|
end="",
|
|
flush=True,
|
|
)
|
|
inputs = outputs
|
|
else:
|
|
with torch.no_grad():
|
|
outputs = self.model.generate(
|
|
inputs, max_length=max_length, do_sample=True
|
|
)
|
|
|
|
del inputs
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to generate the text: {e}")
|
|
raise
|
|
|
|
async def run_async(self, task: str, *args, **kwargs) -> str:
|
|
"""
|
|
Run the model asynchronously
|
|
|
|
Args:
|
|
task (str): Task to run.
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Examples:
|
|
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
|
|
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
|
|
'Once upon a time in a land far, far away...'
|
|
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
|
|
['In the deep jungles,',
|
|
'At the heart of the city,']
|
|
>>> mpt_instance.freeze_model()
|
|
>>> mpt_instance.unfreeze_model()
|
|
|
|
"""
|
|
# Wrapping synchronous calls with async
|
|
return self.run(task, *args, **kwargs)
|
|
|
|
def __call__(self, task: str):
|
|
"""
|
|
Generate a response based on the prompt text.
|
|
|
|
Args:
|
|
- task (str): Text to prompt the model.
|
|
- max_length (int): Maximum length of the response.
|
|
|
|
Returns:
|
|
- Generated text (str).
|
|
"""
|
|
self.load_model()
|
|
|
|
max_length = self.max_length
|
|
|
|
self.print_dashboard(task)
|
|
|
|
try:
|
|
inputs = self.tokenizer.encode(task, return_tensors="pt").to(self.device)
|
|
|
|
# self.log.start()
|
|
|
|
if self.decoding:
|
|
with torch.no_grad():
|
|
for _ in range(max_length):
|
|
output_sequence = []
|
|
|
|
outputs = self.model.generate(
|
|
inputs, max_length=len(inputs) + 1, do_sample=True
|
|
)
|
|
output_tokens = outputs[0][-1]
|
|
output_sequence.append(output_tokens.item())
|
|
|
|
# print token in real-time
|
|
print(
|
|
self.tokenizer.decode(
|
|
[output_tokens], skip_special_tokens=True
|
|
),
|
|
end="",
|
|
flush=True,
|
|
)
|
|
inputs = outputs
|
|
else:
|
|
with torch.no_grad():
|
|
outputs = self.model.generate(
|
|
inputs, max_length=max_length, do_sample=True
|
|
)
|
|
|
|
del inputs
|
|
|
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
except Exception as e:
|
|
self.logger.error(f"Failed to generate the text: {e}")
|
|
raise
|
|
|
|
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
|
"""Call the model asynchronously""" ""
|
|
return await self.run_async(task, *args, **kwargs)
|
|
|
|
def save_model(self, path: str):
|
|
"""Save the model to a given path"""
|
|
self.model.save_pretrained(path)
|
|
self.tokenizer.save_pretrained(path)
|
|
|
|
def gpu_available(self) -> bool:
|
|
"""Check if GPU is available"""
|
|
return torch.cuda.is_available()
|
|
|
|
def memory_consumption(self) -> dict:
|
|
"""Get the memory consumption of the GPU"""
|
|
if self.gpu_available():
|
|
torch.cuda.synchronize()
|
|
allocated = torch.cuda.memory_allocated()
|
|
reserved = torch.cuda.memory_reserved()
|
|
return {"allocated": allocated, "reserved": reserved}
|
|
else:
|
|
return {"error": "GPU not available"}
|
|
|
|
def print_dashboard(self, task: str):
|
|
"""Print dashboard"""
|
|
|
|
dashboard = print(
|
|
colored(
|
|
f"""
|
|
HuggingfaceLLM Dashboard
|
|
--------------------------------------------
|
|
Model Name: {self.model_id}
|
|
Tokenizer: {self.tokenizer}
|
|
Model MaxLength: {self.max_length}
|
|
Model Device: {self.device}
|
|
Model Quantization: {self.quantize}
|
|
Model Quantization Config: {self.quantization_config}
|
|
Model Verbose: {self.verbose}
|
|
Model Distributed: {self.distributed}
|
|
Model Decoding: {self.decoding}
|
|
|
|
----------------------------------------
|
|
Metadata:
|
|
Task Memory Consumption: {self.memory_consumption()}
|
|
GPU Available: {self.gpu_available()}
|
|
----------------------------------------
|
|
|
|
Task Environment:
|
|
Task: {task}
|
|
|
|
""",
|
|
"red",
|
|
)
|
|
)
|
|
|
|
print(dashboard)
|