You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/agent_settings.py

98 lines
2.7 KiB

import os
from swarms import Agent, OpenAIChat
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent-General-11",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
# interactive=True, # Set to False to disable interactive mode
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
# tools=[#Add your functions here# ],
# stopping_token="Stop!",
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs="",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
tool_system_prompt=None,
)
# # Convert the agent object to a dictionary
print(agent.to_dict())
print(agent.to_toml())
print(agent.model_dump_json())
print(agent.model_dump_yaml())
# Ingest documents into the agent's knowledge base
agent.ingest_docs("your_pdf_path.pdf")
# Receive a message from a user and process it
agent.receive_message(name="agent_name", message="message")
# Send a message from the agent to a user
agent.send_agent_message(agent_name="agent_name", message="message")
# Ingest multiple documents into the agent's knowledge base
agent.ingest_docs("your_pdf_path.pdf", "your_csv_path.csv")
# Run the agent with a filtered system prompt
agent.filtered_run(
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"
)
# Run the agent with multiple system prompts
agent.bulk_run(
[
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?",
"Another system prompt",
]
)
# Add a memory to the agent
agent.add_memory("Add a memory to the agent")
# Check the number of available tokens for the agent
agent.check_available_tokens()
# Perform token checks for the agent
agent.tokens_checks()
# Print the dashboard of the agent
agent.print_dashboard()
# Print the history and memory of the agent
agent.print_history_and_memory()
# Fetch all the documents from the doc folders
agent.get_docs_from_doc_folders()
# Activate agent ops
agent.activate_agentops()
agent.check_end_session_agentops()
# Dump the model to a JSON file
agent.model_dump_json()
print(agent.to_toml())