You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/conversation.py

1800 lines
63 KiB

import traceback
import concurrent.futures
import datetime
import json
import os
import uuid
from typing import (
TYPE_CHECKING,
Dict,
List,
Optional,
Union,
Literal,
Any,
)
import yaml
import inspect
from swarms.utils.any_to_str import any_to_str
from swarms.utils.litellm_tokenizer import count_tokens
if TYPE_CHECKING:
from swarms.structs.agent import Agent
from loguru import logger
def generate_conversation_id():
"""Generate a unique conversation ID."""
return str(uuid.uuid4())
def get_conversation_dir():
"""Get the directory for storing conversation logs."""
# Get the current working directory
conversation_dir = os.path.join(os.getcwd(), "conversations")
try:
os.makedirs(conversation_dir, mode=0o755, exist_ok=True)
except Exception as e:
logger.error(
f"Failed to create conversations directory: {str(e)}"
)
# Fallback to the same directory as the script
conversation_dir = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"conversations",
)
os.makedirs(conversation_dir, mode=0o755, exist_ok=True)
return conversation_dir
# Define available providers
providers = Literal[
"mem0",
"in-memory",
"supabase",
"redis",
"sqlite",
"duckdb",
"pulsar",
]
def _create_backend_conversation(backend: str, **kwargs):
"""
Create a backend conversation instance based on the specified backend type.
This function uses lazy loading to import backend dependencies only when needed.
Each backend class handles its own dependency management and error messages.
Args:
backend (str): The backend type to create
**kwargs: Arguments to pass to the backend constructor
Returns:
Backend conversation instance
Raises:
ImportError: If required packages for the backend are not installed (raised by lazy loading)
ValueError: If backend is not supported
"""
try:
if backend == "supabase":
from swarms.communication.supabase_wrap import (
SupabaseConversation,
)
return SupabaseConversation(**kwargs)
elif backend == "redis":
from swarms.communication.redis_wrap import (
RedisConversation,
)
return RedisConversation(**kwargs)
elif backend == "sqlite":
from swarms.communication.sqlite_wrap import (
SQLiteConversation,
)
return SQLiteConversation(**kwargs)
elif backend == "duckdb":
from swarms.communication.duckdb_wrap import (
DuckDBConversation,
)
return DuckDBConversation(**kwargs)
elif backend == "pulsar":
from swarms.communication.pulsar_struct import (
PulsarConversation,
)
return PulsarConversation(**kwargs)
else:
raise ValueError(
f"Unsupported backend: {backend}. "
f"Available backends: supabase, redis, sqlite, duckdb, pulsar"
)
except ImportError as e:
# Provide helpful error messages for missing dependencies
backend_deps = {
"supabase": "pip install supabase",
"redis": "pip install redis",
"sqlite": "Built-in to Python - check your installation",
"duckdb": "pip install duckdb",
"pulsar": "pip install pulsar-client",
}
install_cmd = backend_deps.get(
backend, f"Check documentation for {backend}"
)
logger.error(
f"Failed to initialize {backend} backend. "
f"Missing dependencies. Install with: {install_cmd}"
)
raise ImportError(
f"Backend '{backend}' dependencies not available. "
f"Install with: {install_cmd}. Original error: {e}"
)
except Exception as e:
logger.error(f"Failed to create {backend} backend: {e}")
raise
class Conversation:
"""
A class to manage a conversation history, allowing for the addition, deletion,
and retrieval of messages, as well as saving and loading the conversation
history in various formats.
The Conversation class now supports multiple backends for persistent storage:
- "in-memory": Default memory-based storage (no persistence)
- "mem0": Memory-based storage with mem0 integration (requires: pip install mem0ai)
- "supabase": PostgreSQL-based storage using Supabase (requires: pip install supabase)
- "redis": Redis-based storage (requires: pip install redis)
- "sqlite": SQLite-based storage (built-in to Python)
- "duckdb": DuckDB-based storage (requires: pip install duckdb)
- "pulsar": Apache Pulsar messaging backend (requires: pip install pulsar-client)
All backends use lazy loading - database dependencies are only imported when the
specific backend is instantiated. Each backend class provides its own detailed
error messages if required packages are not installed.
Attributes:
system_prompt (Optional[str]): The system prompt for the conversation.
time_enabled (bool): Flag to enable time tracking for messages.
autosave (bool): Flag to enable automatic saving of conversation history.
save_filepath (str): File path for saving the conversation history.
context_length (int): Maximum number of tokens allowed in the conversation history.
rules (str): Rules for the conversation.
custom_rules_prompt (str): Custom prompt for rules.
user (str): The user identifier for messages.
auto_save (bool): Flag to enable auto-saving of conversation history.
save_as_yaml_on (bool): Flag to save conversation history as YAML.
save_as_json_bool (bool): Flag to save conversation history as JSON.
token_count (bool): Flag to enable token counting for messages.
conversation_history (list): List to store the history of messages.
"""
def __init__(
self,
id: str = generate_conversation_id(),
name: str = "conversation-test",
system_prompt: Optional[str] = None,
time_enabled: bool = False,
autosave: bool = False, # Changed default to False
save_enabled: bool = False, # New parameter to control if saving is enabled
save_filepath: str = None,
load_filepath: str = None, # New parameter to specify which file to load from
context_length: int = 8192,
rules: str = None,
custom_rules_prompt: str = None,
user: str = "User",
save_as_yaml_on: bool = False,
save_as_json_bool: bool = False,
token_count: bool = False,
message_id_on: bool = False,
provider: providers = "in-memory",
backend: Optional[str] = None,
supabase_url: Optional[str] = None,
supabase_key: Optional[str] = None,
tokenizer_model_name: str = "gpt-4.1",
redis_host: str = "localhost",
redis_port: int = 6379,
redis_db: int = 0,
redis_password: Optional[str] = None,
db_path: Optional[str] = None,
table_name: str = "conversations",
use_embedded_redis: bool = True,
persist_redis: bool = True,
auto_persist: bool = True,
redis_data_dir: Optional[str] = None,
conversations_dir: Optional[str] = None,
export_method: str = "json",
*args,
**kwargs,
):
# Initialize all attributes first
self.id = id
self.name = name
self.save_filepath = save_filepath
self.system_prompt = system_prompt
self.time_enabled = time_enabled
self.autosave = autosave
self.save_enabled = save_enabled
self.conversations_dir = conversations_dir
self.tokenizer_model_name = tokenizer_model_name
self.message_id_on = message_id_on
self.load_filepath = load_filepath
self.context_length = context_length
self.rules = rules
self.custom_rules_prompt = custom_rules_prompt
self.user = user
self.save_as_yaml_on = save_as_yaml_on
self.save_as_json_bool = save_as_json_bool
self.token_count = token_count
self.provider = provider # Keep for backwards compatibility
self.conversations_dir = conversations_dir
self.backend = backend
self.supabase_url = supabase_url
self.supabase_key = supabase_key
self.redis_host = redis_host
self.redis_port = redis_port
self.redis_db = redis_db
self.redis_password = redis_password
self.db_path = db_path
self.table_name = table_name
self.use_embedded_redis = use_embedded_redis
self.persist_redis = persist_redis
self.auto_persist = auto_persist
self.redis_data_dir = redis_data_dir
self.export_method = export_method
if self.name is None:
self.name = id
self.conversation_history = []
self.setup_file_path()
self.backend_setup(backend, provider)
def setup_file_path(self):
"""Set up the file path for saving the conversation and load existing data if available."""
# Validate export method
if self.export_method not in ["json", "yaml"]:
raise ValueError(
f"Invalid export_method: {self.export_method}. Must be 'json' or 'yaml'"
)
# Set default save filepath if not provided
if not self.save_filepath:
# Ensure extension matches export method
extension = (
".json" if self.export_method == "json" else ".yaml"
)
self.save_filepath = (
f"conversation_{self.name}{extension}"
)
logger.debug(
f"Setting default save filepath to: {self.save_filepath}"
)
else:
# Validate that provided filepath extension matches export method
file_ext = os.path.splitext(self.save_filepath)[1].lower()
expected_ext = (
".json" if self.export_method == "json" else ".yaml"
)
if file_ext != expected_ext:
logger.warning(
f"Save filepath extension ({file_ext}) does not match export_method ({self.export_method}). "
f"Updating filepath extension to match export method."
)
base_name = os.path.splitext(self.save_filepath)[0]
self.save_filepath = f"{base_name}{expected_ext}"
self.created_at = datetime.datetime.now().strftime(
"%Y-%m-%d_%H-%M-%S"
)
# Check if file exists and load it
if os.path.exists(self.save_filepath):
logger.debug(
f"Found existing conversation file at: {self.save_filepath}"
)
try:
self.load(self.save_filepath)
logger.info(
f"Loaded existing conversation from {self.save_filepath}"
)
except Exception as e:
logger.error(
f"Failed to load existing conversation from {self.save_filepath}: {str(e)}"
)
# Keep the empty conversation_history initialized in __init__
else:
logger.debug(
f"No existing conversation file found at: {self.save_filepath}"
)
def backend_setup(
self, backend: str = None, provider: str = None
):
self.backend = backend or provider
self.backend_instance = None
# Validate backend
valid_backends = [
"in-memory",
"mem0",
"supabase",
"redis",
"sqlite",
"duckdb",
"pulsar",
]
if self.backend not in valid_backends:
raise ValueError(
f"Invalid backend: '{self.backend}'. "
f"Valid backends are: {', '.join(valid_backends)}"
)
# Initialize backend if using persistent storage
if self.backend in [
"supabase",
"redis",
"sqlite",
"duckdb",
"pulsar",
]:
try:
self._initialize_backend(
supabase_url=self.supabase_url,
supabase_key=self.supabase_key,
redis_host=self.redis_host,
redis_port=self.redis_port,
redis_db=self.redis_db,
redis_password=self.redis_password,
db_path=self.db_path,
table_name=self.table_name,
use_embedded_redis=self.use_embedded_redis,
persist_redis=self.persist_redis,
auto_persist=self.auto_persist,
redis_data_dir=self.redis_data_dir,
)
except Exception as e:
logger.warning(
f"Failed to initialize {self.backend} backend: {e}. "
f"Falling back to in-memory storage."
)
self.backend = "in-memory"
self.backend_instance = None
self.setup()
else:
# For in-memory and mem0 backends, use the original setup
self.setup()
def _initialize_backend(self, **kwargs):
"""
Initialize the persistent storage backend.
Args:
**kwargs: Backend-specific configuration parameters
"""
# Prepare common backend arguments
backend_kwargs = {
"system_prompt": self.system_prompt,
"time_enabled": self.time_enabled,
"autosave": self.autosave,
"save_filepath": self.save_filepath,
"context_length": self.context_length,
"rules": self.rules,
"custom_rules_prompt": self.custom_rules_prompt,
"user": self.user,
"save_as_yaml_on": self.save_as_yaml_on,
"save_as_json_bool": self.save_as_json_bool,
"token_count": self.token_count,
}
# Add backend-specific parameters
if self.backend == "supabase":
supabase_url = kwargs.get("supabase_url") or os.getenv(
"SUPABASE_URL"
)
supabase_key = kwargs.get("supabase_key") or os.getenv(
"SUPABASE_ANON_KEY"
)
if not supabase_url or not supabase_key:
raise ValueError(
"Supabase backend requires 'supabase_url' and 'supabase_key' parameters "
"or SUPABASE_URL and SUPABASE_ANON_KEY environment variables"
)
backend_kwargs.update(
{
"supabase_url": supabase_url,
"supabase_key": supabase_key,
"table_name": kwargs.get(
"table_name", "conversations"
),
}
)
elif self.backend == "redis":
backend_kwargs.update(
{
"redis_host": kwargs.get(
"redis_host", "localhost"
),
"redis_port": kwargs.get("redis_port", 6379),
"redis_db": kwargs.get("redis_db", 0),
"redis_password": kwargs.get("redis_password"),
"use_embedded_redis": kwargs.get(
"use_embedded_redis", True
),
"persist_redis": kwargs.get(
"persist_redis", True
),
"auto_persist": kwargs.get("auto_persist", True),
"redis_data_dir": kwargs.get("redis_data_dir"),
"conversation_id": self.id,
"name": self.name,
}
)
elif self.backend in ["sqlite", "duckdb"]:
db_path = kwargs.get("db_path")
if db_path:
backend_kwargs["db_path"] = db_path
elif self.backend == "pulsar":
# Add pulsar-specific parameters
backend_kwargs.update(
{
"pulsar_url": kwargs.get(
"pulsar_url", "pulsar://localhost:6650"
),
"topic": kwargs.get(
"topic", f"conversation-{self.id}"
),
}
)
# Create the backend instance
logger.info(f"Initializing {self.backend} backend...")
self.backend_instance = _create_backend_conversation(
self.backend, **backend_kwargs
)
# Log successful initialization
logger.info(
f"Successfully initialized {self.backend} backend for conversation '{self.name}'"
)
def setup(self):
# Set up conversations directory
self.conversations_dir = (
self.conversations_dir
or os.path.join(
os.path.expanduser("~"), ".swarms", "conversations"
)
)
os.makedirs(self.conversations_dir, exist_ok=True)
# Try to load existing conversation if it exists
conversation_file = os.path.join(
self.conversations_dir, f"{self.name}.json"
)
if os.path.exists(conversation_file):
with open(conversation_file, "r") as f:
saved_data = json.load(f)
# Update attributes from saved data
for key, value in saved_data.get(
"metadata", {}
).items():
if hasattr(self, key):
setattr(self, key, value)
self.conversation_history = saved_data.get(
"history", []
)
else:
self._initialize_new_conversation()
def _initialize_new_conversation(self):
"""Initialize a new conversation with system prompt and rules."""
if self.system_prompt is not None:
self.add("System", self.system_prompt)
if self.rules is not None:
self.add(self.user or "User", self.rules)
if self.custom_rules_prompt is not None:
self.add(self.user or "User", self.custom_rules_prompt)
# if self.tokenizer is not None:
# self.truncate_memory_with_tokenizer()
def _autosave(self):
"""Automatically save the conversation if autosave is enabled."""
return self.export()
def mem0_provider(self):
try:
from mem0 import AsyncMemory
except ImportError:
logger.warning(
"mem0ai is not installed. Please install it to use the Conversation class."
)
return None
try:
memory = AsyncMemory()
return memory
except Exception as e:
logger.error(
f"Failed to initialize AsyncMemory: {str(e)}"
)
return None
def add_in_memory(
self,
role: str,
content: Union[str, dict, list, Any],
category: Optional[str] = None,
):
"""Add a message to the conversation history.
Args:
role (str): The role of the speaker (e.g., 'User', 'System').
content (Union[str, dict, list]): The content of the message to be added.
category (Optional[str]): Optional category for the message.
"""
# Base message with role and timestamp
message = {
"role": role,
"content": content,
}
if self.time_enabled:
message["timestamp"] = datetime.datetime.now().isoformat()
if self.message_id_on:
message["message_id"] = str(uuid.uuid4())
if category:
message["category"] = category
# Add message to conversation history
self.conversation_history.append(message)
# Handle token counting in a separate thread if enabled
if self.token_count is True:
tokens = count_tokens(
text=any_to_str(content),
model=self.tokenizer_model_name,
)
message["token_count"] = tokens
return message
def export_and_count_categories(
self,
) -> Dict[str, int]:
"""Export all messages with category 'input' and 'output' and count their tokens.
This method searches through the conversation history and:
1. Extracts all messages marked with category 'input' or 'output'
2. Concatenates the content of each category
3. Counts tokens for each category using the specified tokenizer model
Args:
tokenizer_model_name (str): Name of the model to use for tokenization
Returns:
Dict[str, int]: A dictionary containing:
- input_tokens: Number of tokens in input messages
- output_tokens: Number of tokens in output messages
- total_tokens: Total tokens across both categories
"""
try:
# Extract input and output messages
input_messages = []
output_messages = []
for message in self.conversation_history:
# Get message content and ensure it's a string
content = message.get("content", "")
if not isinstance(content, str):
content = str(content)
# Sort messages by category
category = message.get("category", "")
if category == "input":
input_messages.append(content)
elif category == "output":
output_messages.append(content)
# Join messages with spaces
all_input_text = " ".join(input_messages)
all_output_text = " ".join(output_messages)
print(all_input_text)
print(all_output_text)
# Count tokens only if there is text
input_tokens = (
count_tokens(
all_input_text, self.tokenizer_model_name
)
if all_input_text.strip()
else 0
)
output_tokens = (
count_tokens(
all_output_text, self.tokenizer_model_name
)
if all_output_text.strip()
else 0
)
total_tokens = input_tokens + output_tokens
return {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"total_tokens": total_tokens,
}
except Exception as e:
logger.error(
f"Error in export_and_count_categories: {str(e)}"
)
return {
"input_tokens": 0,
"output_tokens": 0,
"total_tokens": 0,
}
def add_mem0(
self,
role: str,
content: Union[str, dict, list],
metadata: Optional[dict] = None,
):
"""Add a message to the conversation history using the Mem0 provider."""
if self.provider == "mem0":
memory = self.mem0_provider()
if memory is not None:
memory.add(
messages=content,
agent_id=role,
run_id=self.id,
metadata=metadata,
)
else:
# Fallback to in-memory if mem0 is not available
logger.warning(
"Mem0 provider not available, falling back to in-memory storage"
)
self.add_in_memory(role, content)
def add(
self,
role: str,
content: Union[str, dict, list, Any],
metadata: Optional[dict] = None,
category: Optional[str] = None,
):
"""Add a message to the conversation history.
Args:
role (str): The role of the speaker (e.g., 'User', 'System').
content (Union[str, dict, list]): The content of the message to be added.
metadata (Optional[dict]): Optional metadata for the message.
category (Optional[str]): Optional category for the message.
"""
result = None
# If using a persistent backend, delegate to it
if self.backend_instance:
try:
result = self.backend_instance.add(
role=role, content=content, metadata=metadata
)
except Exception as e:
logger.error(
f"Backend add failed: {e}. Falling back to in-memory."
)
result = self.add_in_memory(
role=role, content=content, category=category
)
elif self.provider == "in-memory":
result = self.add_in_memory(
role=role, content=content, category=category
)
elif self.provider == "mem0":
result = self.add_mem0(
role=role, content=content, metadata=metadata
)
else:
raise ValueError(
f"Error: Conversation: {self.name} Invalid provider: {self.provider} Traceback: {traceback.format_exc()}"
)
# Ensure autosave happens after the message is added
if self.autosave:
self._autosave()
return result
def add_multiple_messages(
self, roles: List[str], contents: List[Union[str, dict, list]]
):
added = self.add_multiple(roles, contents)
if self.autosave:
self._autosave()
return added
def add_multiple(
self,
roles: List[str],
contents: List[Union[str, dict, list, any]],
):
"""Add multiple messages to the conversation history."""
if len(roles) != len(contents):
raise ValueError(
"Number of roles and contents must match."
)
# Now create a formula to get 25% of available cpus
max_workers = int(os.cpu_count() * 0.25)
with concurrent.futures.ThreadPoolExecutor(
max_workers=max_workers
) as executor:
futures = [
executor.submit(self.add, role, content)
for role, content in zip(roles, contents)
]
concurrent.futures.wait(futures)
def delete(self, index: str):
"""Delete a message from the conversation history."""
if self.backend_instance:
try:
return self.backend_instance.delete(index)
except Exception as e:
logger.error(f"Backend delete failed: {e}")
raise
self.conversation_history.pop(int(index))
def update(self, index: str, role, content):
"""Update a message in the conversation history.
Args:
index (int): The index of the message to update.
role (str): The role of the speaker.
content: The new content of the message.
"""
if self.backend_instance:
try:
return self.backend_instance.update(
index, role, content
)
except Exception as e:
logger.error(f"Backend update failed: {e}")
raise
if 0 <= int(index) < len(self.conversation_history):
self.conversation_history[int(index)]["role"] = role
self.conversation_history[int(index)]["content"] = content
else:
logger.warning(f"Invalid index: {index}")
def query(self, index: str):
"""Query a message from the conversation history.
Args:
index (int): The index of the message to query.
Returns:
dict: The message at the specified index.
"""
if self.backend_instance:
try:
return self.backend_instance.query(index)
except Exception as e:
logger.error(f"Backend query failed: {e}")
raise
if 0 <= int(index) < len(self.conversation_history):
return self.conversation_history[int(index)]
return None
def search(self, keyword: str):
"""Search for messages containing a keyword.
Args:
keyword (str): The keyword to search for.
Returns:
list: A list of messages containing the keyword.
"""
if self.backend_instance:
try:
return self.backend_instance.search(keyword)
except Exception as e:
logger.error(f"Backend search failed: {e}")
# Fallback to in-memory search
pass
return [
message
for message in self.conversation_history
if keyword in str(message["content"])
]
def export_conversation(self, filename: str, *args, **kwargs):
"""Export the conversation history to a file.
Args:
filename (str): Filename to export to.
"""
if self.backend_instance:
try:
return self.backend_instance.export_conversation(
filename, *args, **kwargs
)
except Exception as e:
logger.error(f"Backend export failed: {e}")
# Fallback to in-memory export
pass
# In-memory export implementation
# If the filename ends with .json, use save_as_json
if filename.endswith(".json"):
self.save_as_json(force=True)
else:
# Simple text export for non-JSON files
with open(filename, "w", encoding="utf-8") as f:
for message in self.conversation_history:
f.write(
f"{message['role']}: {message['content']}\n"
)
def import_conversation(self, filename: str):
"""Import a conversation history from a file.
Args:
filename (str): Filename to import from.
"""
if self.backend_instance:
try:
return self.backend_instance.import_conversation(
filename
)
except Exception as e:
logger.error(f"Backend import failed: {e}")
# Fallback to in-memory import
pass
self.load_from_json(filename)
def count_messages_by_role(self):
"""Count the number of messages by role.
Returns:
dict: A dictionary with counts of messages by role.
"""
# Check backend instance first
if self.backend_instance:
try:
return self.backend_instance.count_messages_by_role()
except Exception as e:
logger.error(
f"Backend count_messages_by_role failed: {e}"
)
# Fallback to local implementation below
pass
# Initialize counts with expected roles
counts = {
"system": 0,
"user": 0,
"assistant": 0,
"function": 0,
}
# Count messages by role
for message in self.conversation_history:
role = message["role"]
if role in counts:
counts[role] += 1
else:
# Handle unexpected roles dynamically
counts[role] = counts.get(role, 0) + 1
return counts
def return_history_as_string(self):
"""Return the conversation history as a string.
Returns:
str: The conversation history formatted as a string.
"""
if self.backend_instance:
try:
return (
self.backend_instance.return_history_as_string()
)
except Exception as e:
logger.error(
f"Backend return_history_as_string failed: {e}"
)
# Fallback to in-memory implementation
pass
formatted_messages = []
for message in self.conversation_history:
formatted_messages.append(
f"{message['role']}: {message['content']}"
)
return "\n\n".join(formatted_messages)
def get_str(self) -> str:
"""Get the conversation history as a string.
Returns:
str: The conversation history.
"""
if self.backend_instance:
try:
return self.backend_instance.get_str()
except Exception as e:
logger.error(f"Backend get_str failed: {e}")
# Fallback to in-memory implementation
pass
return self.return_history_as_string()
def to_dict(self) -> Dict[str, Any]:
"""
Converts all attributes of the class into a dictionary, including all __init__ parameters
and conversation history. Automatically extracts parameters from __init__ signature.
Returns:
Dict[str, Any]: A dictionary containing:
- metadata: All initialization parameters and their current values
- conversation_history: The list of conversation messages
"""
# Get all parameters from __init__ signature
init_signature = inspect.signature(self.__class__.__init__)
init_params = [
param
for param in init_signature.parameters
if param not in ["self", "args", "kwargs"]
]
# Build metadata dictionary from init parameters
metadata = {}
for param in init_params:
# Get the current value of the parameter from instance
value = getattr(self, param, None)
# Special handling for certain types
if value is not None:
if isinstance(
value, (str, int, float, bool, list, dict)
):
metadata[param] = value
elif hasattr(value, "to_dict"):
metadata[param] = value.to_dict()
else:
try:
# Try to convert to string if not directly serializable
metadata[param] = str(value)
except:
# Skip if we can't serialize
continue
# Add created_at if it exists
if hasattr(self, "created_at"):
metadata["created_at"] = self.created_at
return {
"metadata": metadata,
"conversation_history": self.conversation_history,
}
def save_as_json(self, force: bool = True):
"""Save the conversation history and metadata to a JSON file.
Args:
force (bool, optional): If True, saves regardless of autosave setting. Defaults to True.
"""
try:
# Check if saving is allowed
if not self.autosave and not force:
logger.warning(
"Autosave is disabled. To save anyway, call save_as_json(force=True) "
"or enable autosave by setting autosave=True when creating the Conversation."
)
return
# Don't save if saving is disabled (你的PR代码)
if not self.save_enabled:
logger.warning(
"An attempt to save the conversation failed: save_enabled is False."
"Please set save_enabled=True when creating a Conversation object to enable saving."
)
return
# Get the full data including metadata and conversation history
data = self.get_init_params()
# Ensure we have a valid save path
if not self.save_filepath:
self.save_filepath = os.path.join(
self.conversations_dir or os.getcwd(),
f"conversation_{self.name}.json",
)
# Create directory if it doesn't exist
save_dir = os.path.dirname(self.save_filepath)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
# Save with proper formatting
with open(self.save_filepath, "w", encoding="utf-8") as f:
json.dump(data, f, indent=4, default=str)
logger.info(f"Conversation saved to {self.save_filepath}")
except Exception as e:
logger.error(
f"Failed to save conversation: {str(e)}\nTraceback: {traceback.format_exc()}"
)
raise # Re-raise to ensure the error is visible to the caller
def get_init_params(self):
data = {
"metadata": {
"id": self.id,
"name": self.name,
"system_prompt": self.system_prompt,
"time_enabled": self.time_enabled,
"autosave": self.autosave,
"save_filepath": self.save_filepath,
"load_filepath": self.load_filepath,
"context_length": self.context_length,
"rules": self.rules,
"custom_rules_prompt": self.custom_rules_prompt,
"user": self.user,
"save_as_yaml_on": self.save_as_yaml_on,
"save_as_json_bool": self.save_as_json_bool,
"token_count": self.token_count,
"message_id_on": self.message_id_on,
"provider": self.provider,
"backend": self.backend,
"tokenizer_model_name": self.tokenizer_model_name,
"conversations_dir": self.conversations_dir,
"export_method": self.export_method,
"created_at": self.created_at,
},
"conversation_history": self.conversation_history,
}
return data
def save_as_yaml(self, force: bool = True):
"""Save the conversation history and metadata to a YAML file.
Args:
force (bool, optional): If True, saves regardless of autosave setting. Defaults to True.
"""
try:
# Check if saving is allowed
if not self.autosave and not force:
logger.warning(
"Autosave is disabled. To save anyway, call save_as_yaml(force=True) "
"or enable autosave by setting autosave=True when creating the Conversation."
)
return
# Get the full data including metadata and conversation history
data = self.get_init_params()
# Create directory if it doesn't exist
save_dir = os.path.dirname(self.save_filepath)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
# Save with proper formatting
with open(self.save_filepath, "w", encoding="utf-8") as f:
yaml.dump(
data,
f,
indent=4,
default_flow_style=False,
sort_keys=False,
)
logger.info(
f"Conversation saved to {self.save_filepath}"
)
except Exception as e:
logger.error(
f"Failed to save conversation to {self.save_filepath}: {str(e)}\nTraceback: {traceback.format_exc()}"
)
raise # Re-raise the exception to handle it in the calling method
def export(self, force: bool = True):
"""Export the conversation to a file based on the export method.
Args:
force (bool, optional): If True, saves regardless of autosave setting. Defaults to True.
"""
try:
# Validate export method
if self.export_method not in ["json", "yaml"]:
raise ValueError(
f"Invalid export_method: {self.export_method}. Must be 'json' or 'yaml'"
)
# Create directory if it doesn't exist
save_dir = os.path.dirname(self.save_filepath)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
# Ensure filepath extension matches export method
file_ext = os.path.splitext(self.save_filepath)[1].lower()
expected_ext = (
".json" if self.export_method == "json" else ".yaml"
)
if file_ext != expected_ext:
base_name = os.path.splitext(self.save_filepath)[0]
self.save_filepath = f"{base_name}{expected_ext}"
logger.warning(
f"Updated save filepath to match export method: {self.save_filepath}"
)
if self.export_method == "json":
self.save_as_json(force=force)
elif self.export_method == "yaml":
self.save_as_yaml(force=force)
except Exception as e:
logger.error(
f"Failed to export conversation to {self.save_filepath}: {str(e)}\nTraceback: {traceback.format_exc()}"
)
raise # Re-raise to ensure the error is visible
def load_from_json(self, filename: str):
"""Load the conversation history and metadata from a JSON file.
Args:
filename (str): Filename to load from.
"""
if filename is not None and os.path.exists(filename):
try:
with open(filename, "r", encoding="utf-8") as f:
data = json.load(f)
# Load metadata
metadata = data.get("metadata", {})
# Update all metadata attributes
for key, value in metadata.items():
if hasattr(self, key):
setattr(self, key, value)
# Load conversation history
self.conversation_history = data.get(
"conversation_history", []
)
logger.info(
f"Successfully loaded conversation from {filename}"
)
except Exception as e:
logger.error(
f"Failed to load conversation: {str(e)}\nTraceback: {traceback.format_exc()}"
)
raise
def load_from_yaml(self, filename: str):
"""Load the conversation history and metadata from a YAML file.
Args:
filename (str): Filename to load from.
"""
if filename is not None and os.path.exists(filename):
try:
with open(filename, "r", encoding="utf-8") as f:
data = yaml.safe_load(f)
# Load metadata
metadata = data.get("metadata", {})
# Update all metadata attributes
for key, value in metadata.items():
if hasattr(self, key):
setattr(self, key, value)
# Load conversation history
self.conversation_history = data.get(
"conversation_history", []
)
logger.info(
f"Successfully loaded conversation from {filename}"
)
except Exception as e:
logger.error(
f"Failed to load conversation: {str(e)}\nTraceback: {traceback.format_exc()}"
)
raise
def load(self, filename: str):
"""Load the conversation history and metadata from a file.
Automatically detects the file format based on extension.
Args:
filename (str): Filename to load from.
"""
if filename is None or not os.path.exists(filename):
logger.warning(f"File not found: {filename}")
return
file_ext = os.path.splitext(filename)[1].lower()
try:
if file_ext == ".json":
self.load_from_json(filename)
elif file_ext == ".yaml" or file_ext == ".yml":
self.load_from_yaml(filename)
else:
raise ValueError(
f"Unsupported file format: {file_ext}. Must be .json, .yaml, or .yml"
)
except Exception as e:
logger.error(
f"Failed to load conversation from {filename}: {str(e)}\nTraceback: {traceback.format_exc()}"
)
raise
def search_keyword_in_conversation(self, keyword: str):
"""Search for a keyword in the conversation history.
Args:
keyword (str): Keyword to search for.
Returns:
list: List of messages containing the keyword.
"""
return [
msg
for msg in self.conversation_history
if keyword in msg["content"]
]
def truncate_memory_with_tokenizer(self):
"""
Truncate conversation history based on the total token count using tokenizer.
This version is more generic, not dependent on a specific LLM model, and can work with any model that provides a counter.
Uses count_tokens function to calculate and truncate by message, ensuring the result is still valid content.
Returns:
None
"""
from swarms.utils.litellm_tokenizer import count_tokens
total_tokens = 0
truncated_history = []
for message in self.conversation_history:
role = message.get("role")
content = message.get("content")
# Convert content to string if it's not already a string
if not isinstance(content, str):
content = str(content)
# Calculate token count for this message
token_count = count_tokens(content, self.tokenizer_model_name)
# Check if adding this message would exceed the limit
if total_tokens + token_count <= self.context_length:
# If not exceeding limit, add the full message
truncated_history.append(message)
total_tokens += token_count
else:
# Calculate remaining tokens we can include
remaining_tokens = self.context_length - total_tokens
# If no token space left, break the loop
if remaining_tokens <= 0:
break
# If we have space left, we need to truncate this message
# Use binary search to find content length that fits remaining token space
truncated_content = self._binary_search_truncate(
content,
remaining_tokens,
self.tokenizer_model_name
)
# Create the truncated message
truncated_message = {
"role": role,
"content": truncated_content,
}
# Add any other fields from the original message
for key, value in message.items():
if key not in ["role", "content"]:
truncated_message[key] = value
truncated_history.append(truncated_message)
break
# Update conversation history
self.conversation_history = truncated_history
def _binary_search_truncate(self, text, target_tokens, model_name):
"""
Use binary search to find the maximum text substring that fits the target token count.
Parameters:
text (str): Original text to truncate
target_tokens (int): Target token count
model_name (str): Model name for token counting
Returns:
str: Truncated text with token count not exceeding target_tokens
"""
from swarms.utils.litellm_tokenizer import count_tokens
# If text is empty or target tokens is 0, return empty string
if not text or target_tokens <= 0:
return ""
# If original text token count is already less than or equal to target, return as is
original_tokens = count_tokens(text, model_name)
if original_tokens <= target_tokens:
return text
# Binary search
left, right = 0, len(text)
best_length = 0
best_text = ""
while left <= right:
mid = (left + right) // 2
truncated = text[:mid]
tokens = count_tokens(truncated, model_name)
if tokens <= target_tokens:
# If current truncated text token count is less than or equal to target, try longer text
best_length = mid
best_text = truncated
left = mid + 1
else:
# Otherwise try shorter text
right = mid - 1
# Try to truncate at sentence boundaries if possible
sentence_delimiters = ['.', '!', '?', '\n']
for delimiter in sentence_delimiters:
last_pos = best_text.rfind(delimiter)
if last_pos > len(best_text) * 0.75: # Only truncate at sentence boundary if we don't lose too much content
truncated_at_sentence = best_text[:last_pos+1]
if count_tokens(truncated_at_sentence, model_name) <= target_tokens:
return truncated_at_sentence
return best_text
def clear(self):
"""Clear the conversation history."""
if self.backend_instance:
try:
return self.backend_instance.clear()
except Exception as e:
logger.error(f"Backend clear failed: {e}")
# Fallback to in-memory clear
pass
self.conversation_history = []
def to_json(self):
"""Convert the conversation history to a JSON string.
Returns:
str: The conversation history as a JSON string.
"""
if self.backend_instance:
try:
return self.backend_instance.to_json()
except Exception as e:
logger.error(f"Backend to_json failed: {e}")
# Fallback to in-memory implementation
pass
return json.dumps(self.conversation_history)
def to_dict(self):
"""Convert the conversation history to a dictionary.
Returns:
list: The conversation history as a list of dictionaries.
"""
if self.backend_instance:
try:
return self.backend_instance.to_dict()
except Exception as e:
logger.error(f"Backend to_dict failed: {e}")
# Fallback to in-memory implementation
pass
return self.conversation_history
def get_visible_messages(self, agent: "Agent", turn: int):
"""
Get the visible messages for a given agent and turn.
Args:
agent (Agent): The agent.
turn (int): The turn number.
Returns:
List[Dict]: The list of visible messages.
"""
# Get the messages before the current turn
prev_messages = [
message
for message in self.conversation_history
if message["turn"] < turn
]
visible_messages = []
for message in prev_messages:
if (
message["visible_to"] == "all"
or agent.agent_name in message["visible_to"]
):
visible_messages.append(message)
return visible_messages
def get_last_message_as_string(self):
"""Fetch the last message from the conversation history.
Returns:
str: The last message formatted as 'role: content'.
"""
if self.backend_instance:
try:
return (
self.backend_instance.get_last_message_as_string()
)
except Exception as e:
logger.error(
f"Backend get_last_message_as_string failed: {e}"
)
# Fallback to in-memory implementation
pass
elif self.provider == "mem0":
memory = self.mem0_provider()
return memory.get_all(run_id=self.id)
elif self.provider == "in-memory":
if self.conversation_history:
return f"{self.conversation_history[-1]['role']}: {self.conversation_history[-1]['content']}"
return ""
else:
raise ValueError(f"Invalid provider: {self.provider}")
def return_messages_as_list(self):
"""Return the conversation messages as a list of formatted strings.
Returns:
list: List of messages formatted as 'role: content'.
"""
if self.backend_instance:
try:
return self.backend_instance.return_messages_as_list()
except Exception as e:
logger.error(
f"Backend return_messages_as_list failed: {e}"
)
# Fallback to in-memory implementation
pass
return [
f"{message['role']}: {message['content']}"
for message in self.conversation_history
]
def return_messages_as_dictionary(self):
"""Return the conversation messages as a list of dictionaries.
Returns:
list: List of dictionaries containing role and content of each message.
"""
if self.backend_instance:
try:
return (
self.backend_instance.return_messages_as_dictionary()
)
except Exception as e:
logger.error(
f"Backend return_messages_as_dictionary failed: {e}"
)
# Fallback to in-memory implementation
pass
return [
{
"role": message["role"],
"content": message["content"],
}
for message in self.conversation_history
]
def add_tool_output_to_agent(self, role: str, tool_output: dict):
"""
Add a tool output to the conversation history.
Args:
role (str): The role of the tool.
tool_output (dict): The output from the tool to be added.
"""
self.add(role, tool_output)
def return_json(self):
"""Return the conversation messages as a JSON string.
Returns:
str: The conversation messages formatted as a JSON string.
"""
return json.dumps(
self.return_messages_as_dictionary(), indent=4
)
def get_final_message(self):
"""Return the final message from the conversation history.
Returns:
str: The final message formatted as 'role: content'.
"""
if self.backend_instance:
try:
return self.backend_instance.get_final_message()
except Exception as e:
logger.error(f"Backend get_final_message failed: {e}")
# Fallback to in-memory implementation
pass
if self.conversation_history:
return f"{self.conversation_history[-1]['role']}: {self.conversation_history[-1]['content']}"
return ""
def get_final_message_content(self):
"""Return the content of the final message from the conversation history.
Returns:
str: The content of the final message.
"""
if self.backend_instance:
try:
return (
self.backend_instance.get_final_message_content()
)
except Exception as e:
logger.error(
f"Backend get_final_message_content failed: {e}"
)
# Fallback to in-memory implementation
pass
if self.conversation_history:
output = self.conversation_history[-1]["content"]
return output
return ""
def return_all_except_first(self):
"""Return all messages except the first one.
Returns:
list: List of messages except the first one.
"""
if self.backend_instance:
try:
return self.backend_instance.return_all_except_first()
except Exception as e:
logger.error(
f"Backend return_all_except_first failed: {e}"
)
# Fallback to in-memory implementation
pass
return self.conversation_history[2:]
def return_all_except_first_string(self):
"""Return all messages except the first one as a string.
Returns:
str: All messages except the first one as a string.
"""
if self.backend_instance:
try:
return (
self.backend_instance.return_all_except_first_string()
)
except Exception as e:
logger.error(
f"Backend return_all_except_first_string failed: {e}"
)
# Fallback to in-memory implementation
pass
return "\n".join(
[
f"{msg['content']}"
for msg in self.conversation_history[2:]
]
)
def batch_add(self, messages: List[dict]):
"""Batch add messages to the conversation history.
Args:
messages (List[dict]): List of messages to add.
"""
if self.backend_instance:
try:
return self.backend_instance.batch_add(messages)
except Exception as e:
logger.error(f"Backend batch_add failed: {e}")
# Fallback to in-memory implementation
pass
self.conversation_history.extend(messages)
@classmethod
def load_conversation(
cls,
name: str,
conversations_dir: Optional[str] = None,
load_filepath: Optional[str] = None,
) -> "Conversation":
"""Load a conversation from saved file by name or specific file.
Args:
name (str): Name of the conversation to load
conversations_dir (Optional[str]): Directory containing conversations
load_filepath (Optional[str]): Specific file to load from
Returns:
Conversation: The loaded conversation object
"""
if load_filepath:
conversation = cls(name=name)
conversation.load(load_filepath)
return conversation
conv_dir = conversations_dir or get_conversation_dir()
# Try loading by name with different extensions
for ext in [".json", ".yaml", ".yml"]:
filepath = os.path.join(conv_dir, f"{name}{ext}")
if os.path.exists(filepath):
conversation = cls(
name=name, conversations_dir=conv_dir
)
conversation.load(filepath)
return conversation
# If not found by name with extensions, try loading by ID
filepath = os.path.join(conv_dir, name)
if os.path.exists(filepath):
conversation = cls(name=name, conversations_dir=conv_dir)
conversation.load(filepath)
return conversation
logger.warning(
f"No conversation found with name or ID: {name}"
)
return cls(name=name, conversations_dir=conv_dir)
def return_dict_final(self):
"""Return the final message as a dictionary."""
return (
self.conversation_history[-1]["content"],
self.conversation_history[-1]["content"],
)
def return_list_final(self):
"""Return the final message as a list."""
return [
self.conversation_history[-1]["content"],
]
@classmethod
def list_conversations(
cls, conversations_dir: Optional[str] = None
) -> List[Dict[str, str]]:
"""List all saved conversations.
Args:
conversations_dir (Optional[str]): Directory containing conversations
Returns:
List[Dict[str, str]]: List of conversation metadata
"""
conv_dir = conversations_dir or get_conversation_dir()
if not os.path.exists(conv_dir):
return []
conversations = []
seen_ids = (
set()
) # Track seen conversation IDs to avoid duplicates
for filename in os.listdir(conv_dir):
if filename.endswith(".json"):
try:
filepath = os.path.join(conv_dir, filename)
with open(filepath) as f:
data = json.load(f)
metadata = data.get("metadata", {})
conv_id = metadata.get("id")
name = metadata.get("name")
created_at = metadata.get("created_at")
# Skip if we've already seen this ID or if required fields are missing
if (
not all([conv_id, name, created_at])
or conv_id in seen_ids
):
continue
seen_ids.add(conv_id)
conversations.append(
{
"id": conv_id,
"name": name,
"created_at": created_at,
"filepath": filepath,
}
)
except json.JSONDecodeError:
logger.warning(
f"Skipping corrupted conversation file: {filename}"
)
continue
except Exception as e:
logger.error(
f"Failed to read conversation {filename}: {str(e)}"
)
continue
# Sort by creation date, newest first
return sorted(
conversations, key=lambda x: x["created_at"], reverse=True
)
def clear_memory(self):
"""Clear the memory of the conversation."""
if self.backend_instance:
try:
return self.backend_instance.clear()
except Exception as e:
logger.error(f"Backend clear_memory failed: {e}")
# Fallback to in-memory implementation
pass
self.conversation_history = []
# # Example usage
# # conversation = Conversation()
# conversation = Conversation(token_count=True)
# conversation.add("user", "Hello, how are you?")
# conversation.add("assistant", "I am doing well, thanks.")
# # conversation.add(
# # "assistant", {"name": "tool_1", "output": "Hello, how are you?"}
# # )
# # print(conversation.return_json())
# # # print(conversation.get_last_message_as_string())
# print(conversation.return_json())
# # # conversation.add("assistant", "I am doing well, thanks.")
# # # # print(conversation.to_json())
# # print(type(conversation.to_dict()))
# # print(conversation.to_yaml())