You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/structs/model_parallizer.py

182 lines
5.6 KiB

import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Callable, List
from termcolor import colored
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ModelParallelizer:
"""
ModelParallelizer, a class that parallelizes the execution of a task
across multiple language models. It is a wrapper around the
LanguageModel class.
Args:
llms (List[Callable]): A list of language models.
retry_attempts (int): The number of retry attempts.
iters (int): The number of iterations to run the task.
Attributes:
llms (List[Callable]): A list of language models.
retry_attempts (int): The number of retry attempts.
iters (int): The number of iterations to run the task.
last_responses (List[str]): The last responses from the language
models.
task_history (List[str]): The task history.
Examples:
>>> from swarms.structs import ModelParallelizer
>>> from swarms.llms import OpenAIChat
>>> llms = [
... OpenAIChat(
... temperature=0.5,
... openai_api_key="OPENAI_API_KEY",
... ),
... OpenAIChat(
... temperature=0.5,
... openai_api_key="OPENAI_API_KEY",
... ),
... ]
>>> mp = ModelParallelizer(llms)
>>> mp.run("Generate a 10,000 word blog on health and wellness.")
['Generate a 10,000 word blog on health and wellness.', 'Generate a 10,000 word blog on health and wellness.']
"""
def __init__(
self,
llms: List[Callable] = None,
retry_attempts: int = 3,
iters: int = None,
*args,
**kwargs,
):
self.llms = llms
self.retry_attempts = retry_attempts
self.iters = iters
self.last_responses = None
self.task_history = []
def run(self, task: str):
"""Run the task string"""
try:
for i in range(self.iters):
with ThreadPoolExecutor() as executor:
responses = executor.map(
lambda llm: llm(task), self.llms
)
return list(responses)
except Exception as error:
logger.error(
f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]"
)
def run_all(self, task):
"""Run the task on all LLMs"""
responses = []
for llm in self.llms:
responses.append(llm(task))
return responses
# New Features
def save_responses_to_file(self, filename):
"""Save responses to file"""
with open(filename, "w") as file:
table = [
[f"LLM {i+1}", response]
for i, response in enumerate(self.last_responses)
]
file.write(table)
@classmethod
def load_llms_from_file(cls, filename):
"""Load llms from file"""
with open(filename) as file:
llms = [line.strip() for line in file.readlines()]
return cls(llms)
def get_task_history(self):
"""Get Task history"""
return self.task_history
def summary(self):
"""Summary"""
print("Tasks History:")
for i, task in enumerate(self.task_history):
print(f"{i + 1}. {task}")
print("\nLast Responses:")
table = [
[f"LLM {i+1}", response]
for i, response in enumerate(self.last_responses)
]
print(
colored(
table,
"cyan",
)
)
async def arun(self, task: str):
"""Asynchronous run the task string"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, lambda llm: llm(task), llm)
for llm in self.llms
]
for response in await asyncio.gather(*futures):
print(response)
def concurrent_run(self, task: str) -> List[str]:
"""Synchronously run the task on all llms and collect responses"""
try:
with ThreadPoolExecutor() as executor:
future_to_llm = {
executor.submit(llm, task): llm for llm in self.llms
}
responses = []
for future in as_completed(future_to_llm):
try:
responses.append(future.result())
except Exception as error:
print(
f"{future_to_llm[future]} generated an"
f" exception: {error}"
)
self.last_responses = responses
self.task_history.append(task)
return responses
except Exception as error:
logger.error(
f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]"
)
raise error
def add_llm(self, llm: Callable):
"""Add an llm to the god mode"""
logger.info(f"[INFO][ModelParallelizer] Adding LLM {llm}")
try:
self.llms.append(llm)
except Exception as error:
logger.error(
f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]"
)
raise error
def remove_llm(self, llm: Callable):
"""Remove an llm from the god mode"""
logger.info(f"[INFO][ModelParallelizer] Removing LLM {llm}")
try:
self.llms.remove(llm)
except Exception as error:
logger.error(
f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]"
)
raise error