You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
2.2 KiB
81 lines
2.2 KiB
import os
|
|
from dotenv import load_dotenv
|
|
from swarms.models import GPT4VisionAPI
|
|
from swarms.structs import Agent
|
|
import swarms.prompts.security_team as stsp
|
|
|
|
# Load environment variables and initialize the Vision API
|
|
load_dotenv()
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
llm = GPT4VisionAPI(openai_api_key=api_key)
|
|
|
|
# Image for analysis
|
|
img = "bank_robbery.jpg"
|
|
|
|
# Initialize agents with respective prompts for security tasks
|
|
crowd_analysis_agent = Agent(
|
|
llm=llm,
|
|
sop=stsp.CROWD_ANALYSIS_AGENT_PROMPT,
|
|
max_loops=1,
|
|
multi_modal=True,
|
|
)
|
|
|
|
# Facial Recognition Agent is currently not operational
|
|
# facial_recognition_agent = Agent(
|
|
# llm=llm,
|
|
# sop=stsp.FACIAL_RECOGNITION_AGENT_PROMPT,
|
|
# max_loops=1,
|
|
# multi_modal=True,
|
|
# )
|
|
|
|
weapon_detection_agent = Agent(
|
|
llm=llm,
|
|
sop=stsp.WEAPON_DETECTION_AGENT_PROMPT,
|
|
max_loops=1,
|
|
multi_modal=True,
|
|
)
|
|
|
|
surveillance_monitoring_agent = Agent(
|
|
llm=llm,
|
|
sop=stsp.SURVEILLANCE_MONITORING_AGENT_PROMPT,
|
|
max_loops=1,
|
|
multi_modal=True,
|
|
)
|
|
|
|
emergency_response_coordinator = Agent(
|
|
llm=llm,
|
|
sop=stsp.EMERGENCY_RESPONSE_COORDINATOR_PROMPT,
|
|
max_loops=1,
|
|
multi_modal=True,
|
|
)
|
|
|
|
# Run agents with respective tasks on the same image
|
|
crowd_analysis = crowd_analysis_agent.run(
|
|
"Analyze the crowd dynamics in the scene", img
|
|
)
|
|
|
|
# Facial Recognition Agent is currently not operational
|
|
# facial_recognition_analysis = facial_recognition_agent.run(
|
|
# "Identify any known individuals in the scene", img
|
|
# )
|
|
|
|
weapon_detection_analysis = weapon_detection_agent.run(
|
|
"Inspect the scene for any potential threats", img
|
|
)
|
|
|
|
surveillance_monitoring_analysis = surveillance_monitoring_agent.run(
|
|
"Monitor the overall scene for unusual activities", img
|
|
)
|
|
|
|
emergency_response_analysis = emergency_response_coordinator.run(
|
|
"Develop a response plan based on the scene analysis", img
|
|
)
|
|
|
|
# Process and output results for each task
|
|
# Example output (uncomment to use):
|
|
# print(f"Crowd Analysis: {crowd_analysis}")
|
|
# print(f"Weapon Detection Analysis: {weapon_detection_analysis}")
|
|
# print(f"Surveillance Monitoring Analysis: {surveillance_monitoring_analysis}")
|
|
# print(f"Emergency Response Analysis: {emergency_response_analysis}")
|