You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/structs/test_majority_voting.py

220 lines
6.6 KiB

from swarms.structs.agent import Agent
from swarms.structs.majority_voting import MajorityVoting
def test_majority_voting_basic_execution():
"""Test basic MajorityVoting execution with multiple agents"""
# Create specialized agents with different perspectives
geographer = Agent(
agent_name="Geography-Expert",
agent_description="Expert in geography and world capitals",
model_name="gpt-4o",
max_loops=1,
)
historian = Agent(
agent_name="History-Scholar",
agent_description="Historical and cultural context specialist",
model_name="gpt-4o",
max_loops=1,
)
political_analyst = Agent(
agent_name="Political-Analyst",
agent_description="Political and administrative specialist",
model_name="gpt-4o",
max_loops=1,
)
# Create majority voting system
mv = MajorityVoting(
name="Geography-Consensus-System",
description="Majority voting system for geographical questions",
agents=[geographer, historian, political_analyst],
max_loops=1,
verbose=True,
)
# Test execution
result = mv.run("What is the capital city of France?")
assert result is not None
def test_majority_voting_multiple_loops():
"""Test MajorityVoting with multiple loops for consensus refinement"""
# Create agents with different knowledge bases
trivia_expert = Agent(
agent_name="Trivia-Expert",
agent_description="General knowledge and trivia specialist",
model_name="gpt-4o",
max_loops=1,
)
research_analyst = Agent(
agent_name="Research-Analyst",
agent_description="Research and fact-checking specialist",
model_name="gpt-4o",
max_loops=1,
)
subject_matter_expert = Agent(
agent_name="Subject-Matter-Expert",
agent_description="Deep subject matter expertise specialist",
model_name="gpt-4o",
max_loops=1,
)
# Create majority voting with multiple loops for iterative refinement
mv = MajorityVoting(
name="Multi-Loop-Consensus-System",
description="Majority voting with iterative consensus refinement",
agents=[
trivia_expert,
research_analyst,
subject_matter_expert,
],
max_loops=3, # Allow multiple iterations
verbose=True,
)
# Test multi-loop execution
result = mv.run(
"What are the main causes of climate change and what can be done to mitigate them?"
)
assert result is not None
def test_majority_voting_business_scenario():
"""Test MajorityVoting in a realistic business scenario"""
# Create agents representing different business perspectives
market_strategist = Agent(
agent_name="Market-Strategist",
agent_description="Market strategy and competitive analysis specialist",
model_name="gpt-4o",
max_loops=1,
)
financial_analyst = Agent(
agent_name="Financial-Analyst",
agent_description="Financial modeling and ROI analysis specialist",
model_name="gpt-4o",
max_loops=1,
)
technical_architect = Agent(
agent_name="Technical-Architect",
agent_description="Technical feasibility and implementation specialist",
model_name="gpt-4o",
max_loops=1,
)
risk_manager = Agent(
agent_name="Risk-Manager",
agent_description="Risk assessment and compliance specialist",
model_name="gpt-4o",
max_loops=1,
)
operations_expert = Agent(
agent_name="Operations-Expert",
agent_description="Operations and implementation specialist",
model_name="gpt-4o",
max_loops=1,
)
# Create majority voting for business decisions
mv = MajorityVoting(
name="Business-Decision-Consensus",
description="Majority voting system for business strategic decisions",
agents=[
market_strategist,
financial_analyst,
technical_architect,
risk_manager,
operations_expert,
],
max_loops=2,
verbose=True,
)
# Test with complex business decision
result = mv.run(
"Should our company invest in developing an AI-powered customer service platform? "
"Consider market demand, financial implications, technical feasibility, risk factors, "
"and operational requirements."
)
assert result is not None
def test_majority_voting_error_handling():
"""Test MajorityVoting error handling and validation"""
# Test with empty agents list
try:
MajorityVoting(agents=[])
assert (
False
), "Should have raised ValueError for empty agents list"
except ValueError as e:
assert "agents" in str(e).lower() or "empty" in str(e).lower()
# Test with invalid max_loops
analyst = Agent(
agent_name="Test-Analyst",
agent_description="Test analyst",
model_name="gpt-4o",
max_loops=1,
)
try:
MajorityVoting(agents=[analyst], max_loops=0)
assert (
False
), "Should have raised ValueError for invalid max_loops"
except ValueError as e:
assert "max_loops" in str(e).lower() or "0" in str(e)
def test_majority_voting_different_output_types():
"""Test MajorityVoting with different output types"""
# Create agents for technical analysis
security_expert = Agent(
agent_name="Security-Expert",
agent_description="Cybersecurity and data protection specialist",
model_name="gpt-4o",
max_loops=1,
)
compliance_officer = Agent(
agent_name="Compliance-Officer",
agent_description="Regulatory compliance and legal specialist",
model_name="gpt-4o",
max_loops=1,
)
privacy_advocate = Agent(
agent_name="Privacy-Advocate",
agent_description="Privacy protection and data rights specialist",
model_name="gpt-4o",
max_loops=1,
)
# Test different output types
for output_type in ["dict", "string", "list"]:
mv = MajorityVoting(
name=f"Output-Type-Test-{output_type}",
description=f"Testing output type: {output_type}",
agents=[
security_expert,
compliance_officer,
privacy_advocate,
],
max_loops=1,
output_type=output_type,
)
result = mv.run(
"What are the key considerations for implementing GDPR compliance in our data processing systems?"
)
assert result is not None