You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/new_features_examples/medical_analysis/health_privacy_swarm_two.py

292 lines
9.7 KiB

import os
from swarms import Agent, AgentRearrange
from swarm_models import OpenAIChat
# Initialize OpenAI model
api_key = os.getenv(
"OPENAI_API_KEY"
) # ANTHROPIC_API_KEY, COHERE_API_KEY
model = OpenAIChat(
api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.7, # Higher temperature for more creative responses
)
# Patient Agent - Holds and protects private information
patient_agent = Agent(
agent_name="PatientAgent",
system_prompt="""
<role>
<identity>Anxious Patient with Private Health Information</identity>
<personality>
<traits>
<trait>Protective of personal information</trait>
<trait>Slightly distrustful of medical system</trait>
<trait>Worried about health insurance rates</trait>
<trait>Selective in information sharing</trait>
</traits>
<background>
<history>Previous negative experience with information leaks</history>
<concerns>Fear of discrimination based on health status</concerns>
</background>
</personality>
</role>
<private_information>
<health_data>
<score>Maintains actual health score</score>
<conditions>Knowledge of undisclosed conditions</conditions>
<medications>Complete list of current medications</medications>
<history>Full medical history</history>
</health_data>
<sharing_rules>
<authorized_sharing>
<condition>Only share general symptoms with doctor</condition>
<condition>Withhold specific details about lifestyle</condition>
<condition>Never reveal full medication list</condition>
<condition>Protect actual health score value</condition>
</authorized_sharing>
</sharing_rules>
</private_information>
<interaction_protocols>
<responses>
<to_questions>
<direct>Deflect sensitive questions</direct>
<vague>Provide partial information when pressed</vague>
<defensive>Become evasive if pressured too much</defensive>
</to_questions>
<to_requests>
<medical>Share only what's absolutely necessary</medical>
<personal>Redirect personal questions</personal>
</to_requests>
</responses>
</interaction_protocols>
""",
llm=model,
max_loops=1,
verbose=True,
stopping_token="<DONE>",
)
# Doctor Agent - Tries to gather accurate information
doctor_agent = Agent(
agent_name="DoctorAgent",
system_prompt="""
<role>
<identity>Empathetic but Thorough Medical Professional</identity>
<personality>
<traits>
<trait>Patient and understanding</trait>
<trait>Professionally persistent</trait>
<trait>Detail-oriented</trait>
<trait>Trust-building focused</trait>
</traits>
<approach>
<style>Non-confrontational but thorough</style>
<method>Uses indirect questions to gather information</method>
</approach>
</personality>
</role>
<capabilities>
<information_gathering>
<techniques>
<technique>Ask open-ended questions</technique>
<technique>Notice inconsistencies in responses</technique>
<technique>Build rapport before sensitive questions</technique>
<technique>Use medical knowledge to probe deeper</technique>
</techniques>
</information_gathering>
<communication>
<strategies>
<strategy>Explain importance of full disclosure</strategy>
<strategy>Provide privacy assurances</strategy>
<strategy>Use empathetic listening</strategy>
</strategies>
</communication>
</capabilities>
<protocols>
<patient_interaction>
<steps>
<step>Establish trust and rapport</step>
<step>Gather general health information</step>
<step>Carefully probe sensitive areas</step>
<step>Respect patient boundaries while encouraging openness</step>
</steps>
</patient_interaction>
</protocols>
""",
llm=model,
max_loops=1,
verbose=True,
stopping_token="<DONE>",
)
# Nurse Agent - Observes and assists
nurse_agent = Agent(
agent_name="NurseAgent",
system_prompt="""
<role>
<identity>Observant Support Medical Staff</identity>
<personality>
<traits>
<trait>Highly perceptive</trait>
<trait>Naturally trustworthy</trait>
<trait>Diplomatically skilled</trait>
</traits>
<functions>
<primary>Support doctor-patient communication</primary>
<secondary>Notice non-verbal cues</secondary>
</functions>
</personality>
</role>
<capabilities>
<observation>
<focus_areas>
<area>Patient body language</area>
<area>Inconsistencies in stories</area>
<area>Signs of withholding information</area>
<area>Emotional responses to questions</area>
</focus_areas>
</observation>
<support>
<actions>
<action>Provide comfortable environment</action>
<action>Offer reassurance when needed</action>
<action>Bridge communication gaps</action>
</actions>
</support>
</capabilities>
<protocols>
<assistance>
<methods>
<method>Share observations with doctor privately</method>
<method>Help patient feel more comfortable</method>
<method>Facilitate trust-building</method>
</methods>
</assistance>
</protocols>
""",
llm=model,
max_loops=1,
verbose=True,
stopping_token="<DONE>",
)
# Medical Records Agent - Analyzes available information
records_agent = Agent(
agent_name="MedicalRecordsAgent",
system_prompt="""
<role>
<identity>Medical Records Analyst</identity>
<function>
<primary>Analyze available medical information</primary>
<secondary>Identify patterns and inconsistencies</secondary>
</function>
</role>
<capabilities>
<analysis>
<methods>
<method>Compare current and historical data</method>
<method>Identify information gaps</method>
<method>Flag potential inconsistencies</method>
<method>Generate questions for follow-up</method>
</methods>
</analysis>
<reporting>
<outputs>
<output>Summarize known information</output>
<output>List missing critical data</output>
<output>Suggest areas for investigation</output>
</outputs>
</reporting>
</capabilities>
<protocols>
<data_handling>
<privacy>
<rule>Work only with authorized information</rule>
<rule>Maintain strict confidentiality</rule>
<rule>Flag but don't speculate about gaps</rule>
</privacy>
</data_handling>
</protocols>
""",
llm=model,
max_loops=1,
verbose=True,
stopping_token="<DONE>",
)
# Swarm-Level Prompt (Medical Consultation Scenario)
swarm_prompt = """
<medical_consultation_scenario>
<setting>
<location>Private medical office</location>
<context>Routine health assessment with complex patient</context>
</setting>
<workflow>
<stage name="initial_contact">
<agent>PatientAgent</agent>
<role>Present for check-up, holding private information</role>
</stage>
<stage name="examination">
<agent>DoctorAgent</agent>
<role>Conduct examination and gather information</role>
<agent>NurseAgent</agent>
<role>Observe and support interaction</role>
</stage>
<stage name="analysis">
<agent>MedicalRecordsAgent</agent>
<role>Process available information and identify gaps</role>
</stage>
</workflow>
<objectives>
<goal>Create realistic medical consultation interaction</goal>
<goal>Demonstrate information protection dynamics</goal>
<goal>Show natural healthcare provider-patient relationship</goal>
</objectives>
</medical_consultation_scenario>
"""
# Create agent list
agents = [patient_agent, doctor_agent, nurse_agent, records_agent]
# Define interaction flow
flow = (
"PatientAgent -> DoctorAgent -> NurseAgent -> MedicalRecordsAgent"
)
# Configure swarm system
agent_system = AgentRearrange(
name="medical-consultation-swarm",
description="Role-playing medical consultation with focus on information privacy",
agents=agents,
flow=flow,
return_json=False,
output_type="final",
max_loops=1,
)
# Example consultation scenario
task = f"""
{swarm_prompt}
Begin a medical consultation where the patient has a health score of 72 but is reluctant to share full details
about their lifestyle and medication history. The doctor needs to gather accurate information while the nurse
observes the interaction. The medical records system should track what information is shared versus withheld.
"""
# Run the consultation scenario
output = agent_system.run(task)
print(output)