You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/new_features_examples/qdrant_agent.py

190 lines
5.4 KiB

import os
import uuid
from datetime import datetime
from typing import Optional
from qdrant_client import QdrantClient
from qdrant_client.http import models
from qdrant_client.http.models import Distance, VectorParams
from swarm_models import Anthropic
from swarms import Agent
class QdrantMemory:
def __init__(
self,
collection_name: str = "agent_memories",
vector_size: int = 1536, # Default size for Claude embeddings
url: Optional[str] = None,
api_key: Optional[str] = None,
):
"""Initialize Qdrant memory system.
Args:
collection_name: Name of the Qdrant collection to use
vector_size: Dimension of the embedding vectors
url: Optional Qdrant server URL (defaults to local)
api_key: Optional Qdrant API key for cloud deployment
"""
self.collection_name = collection_name
self.vector_size = vector_size
# Initialize Qdrant client
if url and api_key:
self.client = QdrantClient(url=url, api_key=api_key)
else:
self.client = QdrantClient(
":memory:"
) # Local in-memory storage
# Create collection if it doesn't exist
self._create_collection()
def _create_collection(self):
"""Create the Qdrant collection if it doesn't exist."""
collections = self.client.get_collections().collections
exists = any(
col.name == self.collection_name for col in collections
)
if not exists:
self.client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(
size=self.vector_size, distance=Distance.COSINE
),
)
def add(
self,
text: str,
embedding: list[float],
metadata: Optional[dict] = None,
) -> str:
"""Add a memory to the store.
Args:
text: The text content of the memory
embedding: Vector embedding of the text
metadata: Optional metadata to store with the memory
Returns:
str: ID of the stored memory
"""
if metadata is None:
metadata = {}
# Add timestamp and generate ID
memory_id = str(uuid.uuid4())
metadata.update(
{"timestamp": datetime.utcnow().isoformat(), "text": text}
)
# Store the point
self.client.upsert(
collection_name=self.collection_name,
points=[
models.PointStruct(
id=memory_id, payload=metadata, vector=embedding
)
],
)
return memory_id
def query(
self,
query_embedding: list[float],
limit: int = 5,
score_threshold: float = 0.7,
) -> list[dict]:
"""Query memories based on vector similarity.
Args:
query_embedding: Vector embedding of the query
limit: Maximum number of results to return
score_threshold: Minimum similarity score threshold
Returns:
List of matching memories with their metadata
"""
results = self.client.search(
collection_name=self.collection_name,
query_vector=query_embedding,
limit=limit,
score_threshold=score_threshold,
)
memories = []
for res in results:
memory = res.payload
memory["similarity_score"] = res.score
memories.append(memory)
return memories
def delete(self, memory_id: str):
"""Delete a specific memory by ID."""
self.client.delete(
collection_name=self.collection_name,
points_selector=models.PointIdsList(points=[memory_id]),
)
def clear(self):
"""Clear all memories from the collection."""
self.client.delete_collection(self.collection_name)
self._create_collection()
# # Example usage
# if __name__ == "__main__":
# # Initialize memory
# memory = QdrantMemory()
# # Example embedding (would normally come from an embedding model)
# example_embedding = np.random.rand(1536).tolist()
# # Add a memory
# memory_id = memory.add(
# text="Important financial analysis about startup equity.",
# embedding=example_embedding,
# metadata={"category": "finance", "importance": "high"}
# )
# # Query memories
# results = memory.query(
# query_embedding=example_embedding,
# limit=5
# )
# print(f"Found {len(results)} relevant memories")
# for result in results:
# print(f"Memory: {result['text']}")
# print(f"Similarity: {result['similarity_score']:.2f}")
# Initialize memory with optional cloud configuration
memory = QdrantMemory(
url=os.getenv("QDRANT_URL"), # Optional: For cloud deployment
api_key=os.getenv(
"QDRANT_API_KEY"
), # Optional: For cloud deployment
)
# Model
model = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"))
# Initialize the agent with Qdrant memory
agent = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt="Agent system prompt here",
agent_description="Agent performs financial analysis.",
llm=model,
long_term_memory=memory,
)
# Run a query
agent.run(
"What are the components of a startup's stock incentive equity plan?"
)