You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
10 KiB
322 lines
10 KiB
"""
|
|
Zoe - Real Estate Agent
|
|
|
|
"""
|
|
|
|
import json
|
|
import os
|
|
from dataclasses import dataclass
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
from typing import Any, Optional
|
|
|
|
import requests
|
|
from dotenv import load_dotenv
|
|
from loguru import logger
|
|
from swarm_models import OpenAIChat
|
|
|
|
from swarms import Agent
|
|
|
|
# Configure loguru logger
|
|
logger.add(
|
|
"logs/real_estate_agent_{time}.log",
|
|
rotation="500 MB",
|
|
retention="10 days",
|
|
level="INFO",
|
|
format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
|
|
)
|
|
|
|
|
|
class PropertyType(str, Enum):
|
|
"""Enum for property types"""
|
|
|
|
OFFICE = "office"
|
|
RETAIL = "retail"
|
|
INDUSTRIAL = "industrial"
|
|
MIXED_USE = "mixed-use"
|
|
LAND = "land"
|
|
|
|
|
|
@dataclass
|
|
class PropertyListing:
|
|
"""Data class for commercial property listings"""
|
|
|
|
property_id: str
|
|
address: str
|
|
city: str
|
|
state: str
|
|
zip_code: str
|
|
price: float
|
|
square_footage: float
|
|
property_type: PropertyType
|
|
zoning: str
|
|
listing_date: datetime
|
|
lat: float
|
|
lng: float
|
|
description: Optional[str] = None
|
|
features: Optional[list[str]] = None
|
|
images: Optional[list[str]] = None
|
|
|
|
|
|
class PropertyRadarAPI:
|
|
"""Client for PropertyRadar API integration"""
|
|
|
|
def __init__(self, api_key: str):
|
|
"""Initialize PropertyRadar API client
|
|
|
|
Args:
|
|
api_key (str): PropertyRadar API key
|
|
"""
|
|
self.api_key = api_key
|
|
self.base_url = "https://api.propertyradar.com/v1"
|
|
self.session = requests.Session()
|
|
self.session.headers.update(
|
|
{
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
)
|
|
|
|
def search_properties(
|
|
self,
|
|
max_price: float = 10_000_000,
|
|
property_types: Optional[list[PropertyType]] = None,
|
|
location: Optional[dict[str, Any]] = None,
|
|
min_sqft: Optional[float] = None,
|
|
max_sqft: Optional[float] = None,
|
|
page: int = 1,
|
|
limit: int = 20,
|
|
) -> list[PropertyListing]:
|
|
"""
|
|
Search for commercial properties using PropertyRadar API
|
|
|
|
Args:
|
|
max_price (float): Maximum property price
|
|
property_types (List[PropertyType]): Types of properties to search for
|
|
location (Dict[str, Any]): Location criteria (city, county, or coordinates)
|
|
min_sqft (Optional[float]): Minimum square footage
|
|
max_sqft (Optional[float]): Maximum square footage
|
|
page (int): Page number for pagination
|
|
limit (int): Number of results per page
|
|
|
|
Returns:
|
|
List[PropertyListing]: List of matching properties
|
|
"""
|
|
try:
|
|
# Build the query parameters
|
|
params = {
|
|
"price_max": max_price,
|
|
"property_types": (
|
|
[pt.value for pt in property_types]
|
|
if property_types
|
|
else None
|
|
),
|
|
"page": page,
|
|
"limit": limit,
|
|
"for_sale": True,
|
|
"state": "FL", # Florida only
|
|
"commercial_property": True,
|
|
}
|
|
|
|
# Add location parameters
|
|
if location:
|
|
params.update(location)
|
|
|
|
# Add square footage filters
|
|
if min_sqft:
|
|
params["square_feet_min"] = min_sqft
|
|
if max_sqft:
|
|
params["square_feet_max"] = max_sqft
|
|
|
|
# Make the API request
|
|
response = self.session.get(
|
|
f"{self.base_url}/properties",
|
|
params={
|
|
k: v for k, v in params.items() if v is not None
|
|
},
|
|
)
|
|
response.raise_for_status()
|
|
|
|
# Parse the response
|
|
properties_data = response.json()
|
|
|
|
# Convert to PropertyListing objects
|
|
return [
|
|
PropertyListing(
|
|
property_id=prop["id"],
|
|
address=prop["address"],
|
|
city=prop["city"],
|
|
state=prop["state"],
|
|
zip_code=prop["zip_code"],
|
|
price=float(prop["price"]),
|
|
square_footage=float(prop["square_feet"]),
|
|
property_type=PropertyType(prop["property_type"]),
|
|
zoning=prop["zoning"],
|
|
listing_date=datetime.fromisoformat(
|
|
prop["list_date"]
|
|
),
|
|
lat=float(prop["latitude"]),
|
|
lng=float(prop["longitude"]),
|
|
description=prop.get("description"),
|
|
features=prop.get("features", []),
|
|
images=prop.get("images", []),
|
|
)
|
|
for prop in properties_data["results"]
|
|
]
|
|
|
|
except requests.RequestException as e:
|
|
logger.error(f"Error fetching properties: {e!s}")
|
|
raise
|
|
|
|
|
|
class CommercialRealEstateAgent:
|
|
"""Agent for searching and analyzing commercial real estate properties"""
|
|
|
|
def __init__(
|
|
self,
|
|
openai_api_key: str,
|
|
propertyradar_api_key: str,
|
|
model_name: str = "gpt-4",
|
|
temperature: float = 0.1,
|
|
saved_state_path: Optional[str] = None,
|
|
):
|
|
"""Initialize the real estate agent
|
|
|
|
Args:
|
|
openai_api_key (str): OpenAI API key
|
|
propertyradar_api_key (str): PropertyRadar API key
|
|
model_name (str): Name of the LLM model to use
|
|
temperature (float): Temperature setting for the LLM
|
|
saved_state_path (Optional[str]): Path to save agent state
|
|
"""
|
|
self.property_api = PropertyRadarAPI(propertyradar_api_key)
|
|
|
|
# Initialize OpenAI model
|
|
self.model = OpenAIChat(
|
|
openai_api_key=openai_api_key,
|
|
model_name=model_name,
|
|
temperature=temperature,
|
|
)
|
|
|
|
# Initialize the agent
|
|
self.agent = Agent(
|
|
agent_name="Commercial-Real-Estate-Agent",
|
|
system_prompt=self._get_system_prompt(),
|
|
llm=self.model,
|
|
max_loops=1,
|
|
autosave=True,
|
|
dashboard=False,
|
|
verbose=True,
|
|
saved_state_path=saved_state_path,
|
|
context_length=200000,
|
|
streaming_on=False,
|
|
)
|
|
|
|
logger.info(
|
|
"Commercial Real Estate Agent initialized successfully"
|
|
)
|
|
|
|
def _get_system_prompt(self) -> str:
|
|
"""Get the system prompt for the agent"""
|
|
return """You are a specialized commercial real estate agent assistant focused on Central Florida properties.
|
|
Your primary responsibilities are:
|
|
1. Search for commercial properties under $10 million
|
|
2. Focus on properties zoned for commercial use
|
|
3. Provide detailed analysis of property features, location benefits, and potential ROI
|
|
4. Consider local market conditions and growth potential
|
|
5. Verify zoning compliance and restrictions
|
|
|
|
When analyzing properties, consider:
|
|
- Current market valuations
|
|
- Local business development plans
|
|
- Traffic patterns and accessibility
|
|
- Nearby amenities and businesses
|
|
- Future development potential"""
|
|
|
|
def search_properties(
|
|
self,
|
|
max_price: float = 10_000_000,
|
|
property_types: Optional[list[PropertyType]] = None,
|
|
location: Optional[dict[str, Any]] = None,
|
|
min_sqft: Optional[float] = None,
|
|
max_sqft: Optional[float] = None,
|
|
) -> list[dict[str, Any]]:
|
|
"""
|
|
Search for properties and provide analysis
|
|
|
|
Args:
|
|
max_price (float): Maximum property price
|
|
property_types (List[PropertyType]): Types of properties to search
|
|
location (Dict[str, Any]): Location criteria
|
|
min_sqft (Optional[float]): Minimum square footage
|
|
max_sqft (Optional[float]): Maximum square footage
|
|
|
|
Returns:
|
|
List[Dict[str, Any]]: List of properties with analysis
|
|
"""
|
|
try:
|
|
# Search for properties
|
|
properties = self.property_api.search_properties(
|
|
max_price=max_price,
|
|
property_types=property_types,
|
|
location=location,
|
|
min_sqft=min_sqft,
|
|
max_sqft=max_sqft,
|
|
)
|
|
|
|
# Analyze each property
|
|
analyzed_properties = []
|
|
for prop in properties:
|
|
analysis = self.agent.run(
|
|
f"Analyze this commercial property:\n"
|
|
f"Address: {prop.address}, {prop.city}, FL {prop.zip_code}\n"
|
|
f"Price: ${prop.price:,.2f}\n"
|
|
f"Square Footage: {prop.square_footage:,.0f}\n"
|
|
f"Property Type: {prop.property_type.value}\n"
|
|
f"Zoning: {prop.zoning}\n"
|
|
f"Description: {prop.description or 'Not provided'}"
|
|
)
|
|
|
|
analyzed_properties.append(
|
|
{"property": prop.__dict__, "analysis": analysis}
|
|
)
|
|
|
|
logger.info(
|
|
f"Successfully analyzed {len(analyzed_properties)} properties"
|
|
)
|
|
return analyzed_properties
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error in property search and analysis: {e!s}"
|
|
)
|
|
raise
|
|
|
|
|
|
def main():
|
|
"""Main function to demonstrate usage"""
|
|
load_dotenv()
|
|
|
|
# Initialize the agent
|
|
agent = CommercialRealEstateAgent(
|
|
openai_api_key=os.getenv("OPENAI_API_KEY"),
|
|
propertyradar_api_key=os.getenv("PROPERTYRADAR_API_KEY"),
|
|
saved_state_path="real_estate_agent_state.json",
|
|
)
|
|
|
|
# Example search
|
|
results = agent.search_properties(
|
|
max_price=5_000_000,
|
|
property_types=[PropertyType.RETAIL, PropertyType.OFFICE],
|
|
location={"city": "Orlando", "radius_miles": 25},
|
|
min_sqft=2000,
|
|
)
|
|
|
|
# Save results
|
|
with open("search_results.json", "w") as f:
|
|
json.dump(results, f, default=str, indent=2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|